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1 Introduction

Supersymmetry concerns the distinction between bosonic and fermionic quan-
tum fields. Essentially, bosonic fields (or bosons) commute with all fields,
while fermionic fields (or fermions) anti-commute with each other, meaning
aff = —fa. It turns out that anti-commuting behavior has many mathemat-
ical benefits. For example, since a fermion anti-commutes with itself, it must
square to 0. It follows that power series expansions in a fermionic variable will
terminate after two terms. Another example, which is outside the scope of this
paper, is that the identity component of the matrix supergroup GL(1|1) admits
a parametrization given by a decomposition into lower triangular * diagonal *
upper triangular.® More familiar matrix groups, such as GL(2) or SL(2), do
not have this property.

The basic setup for supersymmetric quantum field theory is as follows. Space-
time is given as a manifold X with n “space” dimensions and one “time” di-
mension. The corresponding theory is (n+1)-dimensional; often times the value
of n is even written explicitly, i.e. it may be written “(2 + 1)-dimensional” if
n = 2. A field on X is something which can be locally expressed using local
coordinates on X. The two main examples are sections of vector bundles on X
and maps from X to another manifold. Given a set of fields F, the physical
theory is given by an action functional S : F — R. Classical field theory is done
by minimizing S. In quantum field theory, we have path integrals
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where Df indicates that the integration is over the space of fields f € F. This
is technically not well-defined, but physicists have ways of extracting the infor-
mation they need from this starting point.

In this paper, we will only be dealing with 0-dimensional quantum field theory.
In particular, will explain how the formalism of supersymmetric 0-dimensional
quantum field theory can be used to count critical points of functions.

IFor more information about this example, see [2].



2 0O-dimensional Quantum Field Theory

In 0-dimensional quantum field theory (QFT), there is no time variable. We
will take the spacetime to be a single point. A field X is then determined by
its value X(p) = = at that point. We treat these fields as variables. Notice
that constants are also bosons. The action S is just a function of x, and path
integrals are ordinary (Riemann) integrals.

We define the partition function

7z = /e_s(””)dx.

Notice that we have replaced iS(x) by —S(z) in the argument of the exponential
function. This is a procedure known as Wick rotation, which is done in order
to make the path integral “more convergent”. The original path integral can be
obtained by analytic continuation, but we will not elaborate more on this.

3 Supersymmetry in 0-dimensions

In 0-dimensional spacetime, fermions are given by variables which anti-commute
with each other, while commuting with constants and bosonic fields. In partic-
ular, a fermion v satisfies ¥ = —1, so 12 = 0. As a consequence, if f is a
function depending on a fermion 1 which admits a power series expansion near
0, we have f(v0) = f(0) + f'(0)yp. We will henceforth assume that all functions
of a fermionic variable are of the form a + b.

Also, notice that a product of two fermions is a boson: Y1993 = —y1 P31 =
131112. These bosons also square to 0, since Y1111y = —h?9h3 = 0.

In supersymmetric QFT, it is required that the action S is bosonic. It is equiv-
alent to require that every term in S contains an even number of fermions.
Therefore, we will take the smallest example and work with two fermions, ¥
and 2. We will also only work with one boson z.

Fermionic integration is given by the rule

/(a + bib)dip = b,

The precise formalism behind rule is called Berezin integration. There is a gen-
eral rule for changing variables in an integral, but we only give a special case:
if 1) = a1 for some non-zero boson a, then dy) = o~ da.

We will also need to take integrals with respect to multiple fermionic variables.
An arbitrary function in 91,1 is given by f(11,v2) = fo+ fivy1 + farba+ fathrte,



and we define

/ F @, o) diprdipy = f.

There is also a corresponding change of variables formula. Suppose ¥} = a); +
bipa, W = ey + dipo. We have

f3105 = fa(ay + bibe)(cpr + dipa) = f3(ad — be)prahy,

SO

[ @ + b, -+ dv)itindv = (ad o) [ 505050105,
Given smooth functions f, g, b in z, we define
F(9(@) + h(@)ints) = F(g(@) + [ (g(@) h(z)in .
For instance, if f(z) = exp(z), we get

exp(g(z) + h(x)Y1¢2) = exp(g(x)) + exp(g(z))h(z)h11p2
= exp(g(z))(1 + h(x)P132).

4 A Supersymmetric Action

Let h(z) be a twice differentiable function of x, and let
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The partition function is
2= [ exp(=S(o. w1, v))dodirdy
— [ expl-t (2 /24 ()t
— [ exp(-H (@) D)1+ W (a)ria)dadind
. / exp(—H (2)2/2)1" (z)dz.

Suppose h is a nonconstant polynomial function. Using a change of variables
y = h'(x), we get
h'(c0) R
Z:/ e Y /Qdy:cﬁ,
h!(—00)
where cis 0 if & is odd degree, and otherwise c is the sign of the leading coefficient

of h. The /7 can be incorporated into the ambiguous Df term in the path
integral definition, so that the partition function is an integer.



Let us now discuss supersymmetries. Supersymmetries are certain infinitesimal
symmetries of the action. We continue working with the same action S as before.
A corresponding supersymmetry transformation is given by the rules

0r = €191 + €21o,
Sy = W (z)ez
0y = —h/(x)er,
where the ¢; are two fermionic parameters. We compute the change in S under
this transformation, using the additional rules §(f(x)) = f'(x)dx and §(adb) =
(6a)b + a(db):
85 = (k' ()?/2) — 8(h" (z)¢11)2)
= I'(2)h" (x)dz — K" (2)(0x)1bs — h"(2)(6¢1)2 — h" (2)11 (6¢2)
= (W (2)h" (2) = W (x)19p2)dx — B (2) (691 )32 — B (2)3h1 (6¢2)
( "(@)h"(z) = B (x)p1ebe) (e1¢r + e2¢2) — B (2) (R (2)e2)p2 — R ()1 (—H (z)er)
W ()R (z)(e191 + eatp) — I (2)R" () (e2th2 — Yre1)
= W (z)h"(z) (191 + e2th2) — W' (2)h" (z) (€212 + €19)1)
=0.
Since S is invariant under our supersymmetric transformation, S is called su-
persymmetric.

There is a localization principle for path integrals: “The path integral becomes
localized on the field configurations for which the fermionic variables are in-
variant under supersymmetry.” In the example at hand, the fermionic variables
are invariant if h'(x)ea = —h/(z)e; = 0 for arbitrary ¢;. This is the case when
R'(z) = 0. Thus, if we assume h is a nonconstant polynomial, then the path
integral becomes a finite sum over the critical points of h.

We note here that the discussion in [1] of the path integral on the locus of
h'(x) # 0 is incorrect, and a correction is posted on the AMS webpage for [1].
We will not go through that discussion.

Let x. be a critical point of h, and assume h”(x.) # 0. Near x., we may write
h(x) = h(ze)+ %m(x—xc)? We ignore higher orders since S does not depend
on them. Then the path integral contribution near z. is

Z = /exp(fh’(x)2/2)h"(x)dx
=h"(x.) /exp(—h”(wc)2(x —2.)%/2)dx

™

= h”(IC) W
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The sign is the same as the sign of h”(x.). Once again, the /7 term can be
absorbed into the path integral. We get that the total partition function is a
sum over the critical points z. of the sign of h”(z.). The terms of this sum
will cancel to get an integer between —1 and 1, which is what we arrived at
previously. However, we would like to avoid the issue of signs, so that we can
count the critical points

To do so, we introduce complex variables and their conjugates. In particular,
we will treat 2z and Zz as independent bosons; similarly we will have fermions
1,19 and ¥1,19. Let W(z) be holomorphic in z. The corresponding action is

S =W (2)]> = W (2)b1tpe — W (2)1¢o.

Infinitesimal transformations will also have corresponding conjugate versions.
In particular, for fermionic parameters €1, €2, we have a supersymmetric trans-
formation given by

0z = €11 + €2y, 6z = €11 + €at)a,
51,[)1 = EQW/(Z), 51/;1 = €2W,(Z)a
Shy = —e W' (2), 0tz = —ea W'(2).

All variations not explicitly listed, such as 0z, are 0. We show directly that
0S8 =465 =0. We have

8S = W"(2)02W'(2) — W" (2)821p19p2 — W (2)5p19pe — W (2)1p10¢2
=W"(2)W'(z)(e191 + eatha) — W (2)W'(2)eath + W (2)W'(2)¢h1e1
— 0,

SS = W’(z)W”(z)52 - W’”(Z)Szizl’(/jg - W”(Z)g"(/jli/_lg - W”(Z)?/_Jlg’LZJQ
= W' ()W (2)(e1¢1 + €292) — W/ (2)W" (2)eatho + W' (2)W" (2) 11
=0.

We have used |z|? = 2z, and that a holomorphic function in z has no dependence
on z. Next, we compute the partition function for this action. First, we integrate
the fermionic variables. Note that

e ¥ = €_|W/‘2(1 + W h11ha) (1 4+ Wih19ho),
so that
Z:/|W”|26_‘W/‘2dzd2.

Once again, we write W(z) = W(z.) + %(z — 20)? near a critical point of
W. As a short-hand, we write W/ for W"”(z.). The contribution to the path
integral is then

|WCN|2/ei‘W‘i/B‘Z*ZC'QdZdZ: |WC/,|2/67|Wé’|2(z2+y2)(—2’1:d$dy) — o

The contribution is the same at each critical point, so we can normalize by this
amount to find that the partition function counts the critical points of W.
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