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Abstract

In this paper, we give a proof of a special case of the points-lines-planes
conjecture, which in turn is a special case of a conjecture which says that
the Whitney numbers of the second kind are log-concave.

1 Introduction

Given a matroid M , the Whitney numbers of the second kind1, denoted Wk,
are defined as the number of rank k flats of M . The Whitney numbers have
long been presumed to have various interesting properties. One such property is
log-concavity, and it is still an open conjecture as to whether this property holds
for every matroid. Other sequences of numbers associated to a matroid have
been shown to be log-concave. The proofs of these seemingly simple discrete
statements involved advanced machinery from fields such as algebraic geometry
and Hodge theory.

One conjecture about the Whitney numbers which was recently proved is the
so-called Top-Heavy conjecture of Dowling and Wilson ([DW74, DW75]). This
states that, for i < r/2, where r is the rank of M , we have Wi ≤ Wr−i and
Wi ≤Wi+1. This was proved by Huh and Wang in 2017 ([HW17]) for realizable
matroids, and then it was proved for all matroids by Braden, Huh, Matherne,
Proudfoot, and Wang in 2020 ([BHM+20]). It is a classic result of de Bruijn
and Erdös (see page 64 of [AZ10]) that for n ≥ 3 points in the plane, not all of
which are on a line, there are at least n lines which pass through at least two of
the points. This is a special case of the Top-Heavy conjecture, as it says that
W1 ≤W2 for matroids of rank at least 3.

In this paper, we give a proof of a special case of log-concavity of the Whitney
numbers. The proof presented in this paper is essentially that of Seymour
(Section 2 of [Sey82]), but with more details as necessary.

1For brevity, we will not say “of the second kind.”
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2 Preliminaries

2.1 Matroids

We will begin with a review of the definitions of matroids and their flats.

Definition 1. A matroid is a pair M = (E, I), where E is a finite set and I
is a set of subsets of E satisfying the following axioms:

1. ∅ ∈ I.

2. If A′ ⊆ A ⊆ E and A ∈ I, then A′ ∈ I.

3. If A,B ∈ I and |A| > |B|, then there exists an x ∈ A such that x /∈ B and
B ∪ {x} ∈ I.

Elements of I are called the independent sets of M .

Example 2. A realizable matroid is2 one which is formed by taking E to be
a finite subset of a vector space and taking I to be those subsets of E which
consist of linearly independent vectors.

Definition 3. Given a matroid M = (E, I) and a set A ⊆ E, the rank of A
is defined to be the largest n such that there exists B ∈ I with |B| = n and
B ⊆ A. The rank of the matroid is defined to be the rank of E.

Definition 4. Given a matroid M = (E, I), a set A ⊆ E is a flat if for every
x ∈ E with x /∈ A, the rank of A ∪ {x} is strictly greater than the rank of A.

Definition 5. A matroid M = (E, I) is simple if the rank 1 flats of M are
exactly the singleton subsets of E.

Definition 6. Let A ⊂ E. One can form the set

Â = A ∪ {x ∈ E | x /∈ A, rank(A ∪ {x}) = rank(A)},

which is a flat. We call this the flat-closure of A. If A is a flat, then A = Â.

Definition 7. Given a matroid M = (E, I) of rank r and i ∈ {0, ..., r}, we let
Wi be the number of rank i flats. Wi is the ith Whitney number.

Lemma 8. If matroid M = (E, I) has rank r and i ∈ {0, ..., r}, then Wi ̸= 0.

Proof. Note that W0 =Wr = 1, since ∅ is the only flat (in fact, the only set) of
rank 0, and E is the only flat of rank r. This is enough for r ∈ {0, 1}. Assume
that r > 1 and let i ∈ {1, ..., r−1}. Since E has rank r, there is a set A of size r
in I. Any subset of A is in I by the axioms of a matroid, so there is some set B
of size i in I. Its flat-closure B̂ is then a flat of rank i, since taking flat-closure
does not change rank by definition, and B has rank i. Thus there is at least one
flat of rank i, i.e. Wi ̸= 0.

2Technically, a realizable matroid is isomorphic to a matroid described by vectors.
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2.1.1 Notation and Assumptions on Matroids

Unless otherwise stated, any given matroid will be simple. Let M be a ma-
troid. A point of M is a rank 1 flat. Similarly, a line is a rank 2 flat, and
a plane is a rank 3 flat. Let T be the set of points, let L be the set of lines,
and let P denote the set of planes. By definition,W1 = |T |,W2 = |L|,W3 = |P |.

Any variable denoted by e, e′, e1, etc. will be assumed to be an element of
T . Similarly, variables l and p will be assumed to be elements of L and P
respectively. We will also use short-hands in sums, such as

∑
e f(e) in place of∑

e∈T

f(e). If X is a flat of rank k, we let d(X) be the number of rank k− 1 flats

contained in X. For e ∈ T and l ∈ L, define ϕ(e) and ψ(l) to be

ϕ(e) =
∑
l⊃e

1

d(l)
, ψ(l) =

∑
p⊃l

1

d(p)
.

2.2 Hall’s Marriage Theorem

We will need an important result from graph theory, known as Hall’s marriage
theorem. We give the necessary terminology to state it.

Definition 9. A graph G is a pair (V,E) where V is a set, called the vertex
set, and E is a set of 2-element subsets of V , called the edge set. Elements of
V are called vertices, and elements of E are called edges. If {x, y} ∈ E, we
say there is an edge between x and y. Two edges share a vertex if they are
not disjoint. A graph is finite if V is a finite set.

Definition 10. A graph G = (V,E) is bipartite if the vertex set V can be
written as a disjoint union of subsets X and Y , such that there is no edge
between two elements of X, and there is no edge between two elements of Y . If
this is the case, we write G = (X,Y,E).

Definition 11. Given a bipartite graph G = (X,Y,E), an X-perfect match-
ing M in G is a set of |X| distinct edges of G, such that no two edges in M
share a vertex.

Definition 12. Given a graph G = (V,E) and a vertex v, we define the neigh-
borhood NG(v) to be the set of vertices w such that {v, w} ∈ E. More gener-
ally, for a subset W of V , we define NG(W ) to be the union of the NG(v) for
all v ∈W .

Theorem 13 (Hall’s Marriage Theorem). Let G = (X,Y,E) be a finite bipartite
graph. Then there exists an X-perfect matching if and only if for every W ⊆ X,
we have |W | ≤ |NG(W )|.
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3 The Main Theorem

Theorem 14. Let M be a matroid. If no line of M contains more than three
points, then W 2

2 ≥W1W3.

Proof. Our proof will be split into several lemmas.

Lemma 15. W 2
2 ≥W1W3 if and only if 0 ≤W2

∑
e ϕ(e)−W1

∑
l ψ(l).

Proof. We show that
∑

e ϕ(e) = W2 and
∑

l ψ(l) = W3, so that the second
condition says 0 ≤W 2

2 −W1W3, which is clearly equivalent to the first condition.
We have ∑

e

ϕ(e) =
∑
e

∑
l⊃e

1

d(l)
=

∑
l

∑
e⊂l

1

d(l)
=

∑
l

1 = |L| =W2.

Here, we have swapped the order of summation, which is always justified for

finite sums. The sum
∑
e⊂l

1

d(l)
equals 1 because, by definition, there are d(l)

points e satisfying e ⊂ l. A similar calculation shows that
∑

l ψ(l) =W3.

Lemma 16. If e ⊂ l, then ϕ(e) ≥ ψ(l).

Proof. For each plane p containing l, choose a point ep ⊂ p which is not on l.
Note that if such a choice was not possible, then we would have p = l, which
contradicts the assumption that p and l have different ranks. Let lp be the flat
closure of e ∪ ep. Then lp is a line with e ⊂ lp ⊂ p and lp ̸= l. For planes
p, p′ ⊃ l, p is the flat closure of l ∪ lp and p′ is the flat closure of l ∪ lp′ , so if
p ̸= p′, then lp ̸= lp′ . Thus, there are at least as many lines containing e as
there are planes containing l.

Now, for p ⊃ l, we have d(p) ≥ d(lp): there is always a point e′ ⊂ p for which
e′ ̸⊂ lp, and for each point ei ⊂ lp, the flat closure of e

′ ∪ ei is a line li contained
in p, with li ̸= lj if ei ̸= ej . Using this inequality, we get

ψ(l) =
∑
p⊃l

1

d(p)
≤

∑
p⊃l

1

d(lp)
≤

∑
l′⊃e

1

d(l′)
= ϕ(e),

where the second inequality follows because each lp is a distinct line containing e,

so that the sum
∑
l′⊃e

1

d(l′)
equals the sum

∑
p⊃l

1

d(lp)
plus some extra non-negative

terms.

So far, we have not used the assumption that M has no lines which contain
more than 3 points.

Lemma 17. Suppose no line of M contains more than three points. For any
collection of points X, there are at least |X|W2/W1 lines which contain a point
in X.
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Proof. For brevity, we will say a line intersects X if it contains a point in X.
Let L′ ⊆ L be the set of lines which intersect X.

We claim that any line l in L′ contains at most two pairs (x, y), where x ∈ X
and y ∈ T −X. Indeed, suppose we had three such pairs (xi, yi) for i ∈ {1, 2, 3}.
Since x1 ∈ X and y1 /∈ X, the points x1, y1 are distinct. Similarly, x2, y2 are
distinct. By assumption, l cannot contain four distinct points. Thus x2 = x1 or
y2 = y1. If (x1, y1) ̸= (x2, y2), then the third pair (x3, y3) is forced to be equal
to one of the other two pairs.

Each pair (x, y) ∈ X × (T −X) is in a unique member of L′, namely the flat-
closure of x ∪ y. There are |X|(W1 − |X|) of these pairs, so by the previous
observation, |L′| ≥ 1

2 |X|(W1 − |X|).

Any line not in L′ is determined by two points not in X, so

|L− L′| ≤
(
W1 − |X|

2

)
=

1

2
(W1 − |X|)(W1 − |X| − 1) ≤ 1

2
(W1 − |X|)2.

Thus

|L′| ≥ 1

2
|X|(W1 − |X|) = |X|

W1 − |X|
1

2
(W1 − |X|)2 ≥ |X|

W1 − |X|
(W2 − |L′|),

which simplifies to |L′| ≥ |X|W2/W1.

The conclusion of Lemma 17 allow us to construct a function α : T × L→ Z≥0

with the following properties:

α(e, l) = 0 if e ̸⊂ l; For all e,
∑
l

α(e, l) =W2; For all l,
∑
e

α(e, l) =W1.

The proof of the existence of α is deferred to Section 4.

We can now prove Theorem 14. For any pair (e, l) ∈ T × L, we know that
α(e, l) ≥ 0. If e ⊂ l, then ϕ(e)−ψ(l) ≥ 0 by Lemma 16. If e ̸⊂ l, then α(e, l) = 0,
so that α(e, l)(ϕ(e)− ψ(l)) = 0. Thus, we have that 0 ≤

∑
e,l

α(e, l)(ϕ(e)− ψ(l)).

But ∑
e,l

α(e, l)ϕ(e) =
∑
e

ϕ(e)
∑
l

α(e, l) =W2

∑
e

ϕ(e).

Similarly,
∑
e,l

α(e, l)ψ(l) = W1

∑
l

ψ(l). Thus 0 ≤ W2

∑
e
ϕ(e) −W1

∑
l

ψ(l). By

Lemma 15, we have W 2
2 ≥W1W3 as desired.
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4 Existence of α

Fix a matroid M = (E, I). Let m = W1, n = W2. Assume that if X ⊆ T ,
then X intersects at least |X|n/m lines. Let G = (T, L,D) be the bipar-
tite graph where e ∈ T and l ∈ L are connected by an edge if and only if
e ⊂ l. Then, consider the bipartite graph Ĝ = (T̂ , L̂, D̂), constructed as fol-
lows.3 Write T = {e1, ..., em}, L = {l1, ..., ln}. Let êi be an n element set, say

êi = {xi,1, ..., xi,n}. Similarly, let l̂i = {yi,1, ..., yi,m}. Furthermore, suppose

that for i ̸= j, êi ∩ êj = ∅ = l̂i ∩ l̂j . Then let T̂ =
⋃m

i=1 êi and L̂ =
⋃n

i=1 l̂i.

Vertices xi,j ∈ T̂ and ys,t ∈ L̂ are connected by an edge if and only if ei ⊂ ls.

An informal yet more digestible way to describe the construction of Ĝ is as
follows. From the graph G, replace each vertex in T by W2 copies of itself, and
replace each vertex in L by W1 copies of itself. An edge in G between e and l
is replaced by W1W2 edges between the copies of e and l.

Let X ⊂ T̂ . For i ∈ {1, . . . ,m}, let ri be the number of elements in X that are
of the form xi,t for t ∈ {1, ..., n}. Then ri ≤ n. We can relabel the points of the
matroid so that there is some number j such that ri = 0 if and only if i > j.
Then |X| = r1 + ...+ rj ≤ jn.

Now, suppose there are k lines which intersect {e1, ..., ej}. Then |NĜ(X)| = km,

since each of the k lines corresponds to m vertices in Ĝ. Furthermore, by the
assumption on M , we have k ≥ jn/m. Then

|NĜ(X)| = km ≥ jn ≥ |X|.

By Hall’s marriage theorem, there exists a T̂ -perfect matching M in Ĝ. Since
|T̂ | = mn = |L̂|, M is also an L̂-perfect matching. We define α(e, l) = |{(x, y) ∈
M : x ∈ ê, y ∈ l̂}|. By construction, there is only an edge between a vertex in ê

and a vertex in l̂ if e ⊂ l; thus α(e, l) = 0 if e ̸⊂ l. For a fixed point e, the sum∑
l

α(e, l) equals the size of {(x, y) ∈ M : x ∈ ê}. By the definition of a perfect

matching, the size of this set is |ê| = n = W2. Similarly, for a fixed line l, we
have

∑
e
α(e, l) = W1. This α therefore satisfies the desired criteria needed in

the proof of Theorem 14.

3I owe this construction, and particularly its use in this proof, to Antoine Labelle.
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