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Abstract. This paper is a short, hands-on summary of key ideas
in differential forms. In particular, we will show how they can be
used as a tool in algebraic topology. However, differential forms are
also useful in various other branches of mathematics, such as dif-
ferential geometry, algebraic geometry, and mathematical physics,
to name a few. They also provide generalizations of familiar facts
from calculus and physics courses.

1. Introduction

In a standard graduate topology course, the first algebraic invariant
of a topological space introduced is usually the fundamental group. In
particular, one can say that two spaces are not homeomorphic (“the
same”) if they have non-isomorphic (“different”) fundamental groups.
However, non-homeomorphic spaces can have the same fundamental
group, so it helps to have develop even more ways to distinguish spaces
algebraically. The next algebraic invariants one learns (perhaps in a
second course on topology) are the homology groups. The typical in-
tuition provided for these groups are that they count the “number of
holes” in a topological space. Finally, one learns of cohomology, which
is much harder to provide intuition for. In many examples, it seems
that the homology groups give the same information as the cohomol-
ogy groups. However, the cohomology groups of a space have the extra
benefit of coming together to form a ring, and this ring structure can
be used to distinguish topological spaces that have the same cohomol-
ogy groups. In particular, cohomology is a very strong invariant of a
topological space.

The main goal of this paper is to introduce differential forms as a
tool which can compute the cohomology of certain topological spaces,
namely (smooth) manifolds. More precisely, we study the de Rham
cohomology, which agrees with the usual topological approach to co-
homology in most “nice” cases. Differential forms are perhaps the
simplest way to develop cohomology, since most of the computations
involve nothing more than familiar calculus techniques.
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One key result in the subject of differential forms is the (general-
ized) Stokes’ Theorem, which gives a simultaneous generalization of
the Fundamental Theorem of Calculus, Green’s Theorem, and the Di-
vergence Theorem. These theorems, which are encountered and used
to solve countless problems in calculus and physics classes, can be seen
as special cases of a beautiful statement in the language of differential
forms.

We also mention, for the physics-inclined reader, that there is an
interesting (and short!) formulation of Maxwell’s equations in the lan-
guage of differential forms. However, this will not be explored in this
paper.

2. Manifolds

Differential forms live on certain topological spaces called smooth
manifolds. Thus, before we can even give an intuitive idea of what
differential forms are, we need to give the appropriate background.

The idea of a manifold is actually already familiar from calculus. In
calculus, the notions of derivative and linearization (or first order ap-
proximation) come from the idea that curves look like lines close up.
In topology, this idea is applied to an arbitrary dimension n. That
is to say, for some fixed n, an n dimensional manifold is a topologi-
cal spaces which “looks like” Rn. The precise meaning of “look like”
can depend on the type of manifolds one considers – topological, dif-
ferentiable, smooth, analytic, and so on. For the setting of differential
forms, we will only consider smooth manifolds, and henceforth drop the
word “smooth” and just say “manifold”. Let us now give the precise
definition of a manifold.

Definition 2.1. A smooth n-dimensional manifold (or n-manifold for
short) is a topological space M together with a collection of pairs
(Uα, ϕα) called charts, such that:

(1) each Uα is an open subset of M ,
(2) the union of all the sets Uα is equal to M ,
(3) each ϕα is a homeomorphism from Uα to Rn,
(4) and the transition functions ϕα ◦ ϕ−1

β restricted to ϕβ(Uα ∩Uβ)
are infinitely differentiable.

In more digestible words, conditions (1), (2), and (3) formalize the
idea that “a manifold is covered by pieces which look like Rn,” and
condition (4) formalizes the idea that each Rn piece on a manifold
is compatible with any other piece it intersects. Put another way,
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manifolds can be thought of as gluing copies of Rn together in a smooth
and compatible way.

A tautological example of an n-manifold is Rn, equipped with a single
chart (Rn, id). A more interesting example, while still familiar, is the n-
sphere Sn. For instance, S1 is a circle. If we fix a particular realization
of the circle, say as the set of points (x, y) in R2 satisfying x2 + y2 = 1
equipped with the subspace topology, then we can give S1 the data of
a smooth manifold with two charts (U1, ϕ1), (U2, ϕ2), as follows.1 Let
U1 = {(x, y) ∈ S1 | y ̸= 1} and let U2 = {(x, y ∈ S1 | y ̸= −1}. Let

ϕ1(x, y) =
x

1− y
and ϕ2(x, y) =

x

1 + y
. One can then check that the

four conditions of Definition 2.1 are satisfied.
It should be noted that there is not a unique way to equip a given

topological space with a manifold structure. When we refer to a man-
ifold, we refer to both the underlying topological space and a given
collection of charts.

2.1. Local Coordinates. Recall that the topological space Rn is the
product of n copies of the topological space R. It comes with n con-
tinuous maps ui : Rn → R which map a point p = (p1, ..., pn) in Rn to
pi. These maps ui can be thought of as providing a coordinate system
for Rn. We want something similar for manifolds.

It turns out that we cannot (always) describe points on manifolds
uniquely by coordinates. However, we can give a manifold a local coor-
dinate system. In particular, each chart (Uα, ϕα) of an n-manifold gives
rise to coordinate functions xi = ui ◦ ϕα : Uα → R for i ∈ {1, ..., n}.
In other words, a point p ∈ Uα can be associated to the coordinates
(p1, ..., pn) with each pi ∈ R, where (p1, ..., pn) are the coordinates of
ϕα(p) in Rn.

One caveat of local coordinates is the following. A point p on a
manifold M can belong to two subsets Uα and Uβ, and therefore be

given two different coordinates. For example, the point

(
1√
2
,
1√
2

)
on

S1 can be associated to the coordinate
√
2 + 1 via ϕ1, and it can also

be associated to the coordinate
√
2 − 1 via ϕ2. One can verify that

ϕ1(x, y)ϕ2(x, y) = 1 if and only if (x, y) ∈ U1 ∩ U2. In other words, for
any point in the overlap U1 ∩ U2, the two coordinates associated to it
are reciprocals of each other.

In general, since the maps ϕα and ϕβ are homeomorphisms, there
is a bijection between coordinates of points in Uα ∩ Uβ given by ϕα,

1This procedure is known as stereographic projection, and can be used analo-
gously for Sn in general.
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and the coordinates of such points given by ϕβ. However, a bijection
may not be strong enough. It is exactly condition (4) of Definition 2.1
that ensures we can switch between coordinate systems in a way that
would not “break” any sort of calculus ideas that we want to employ
on manifolds.

From here on out, things will only get more technical. However, the
one thing to keep in mind is the following general pattern of manifold
theory:

(1) Locality: do/define something with local coordinates.
(2) Compatibility: check that the computation/construction is well-

defined with respect to a change of coordinate systems.
(3) Gluing: conclude that the computation/construction holds for

the whole manifold.

For brevity, we will mainly focus on “locality”, as the other two
(especially gluing) are more technical.

2.2. Functions. A common theme in mathematics, especially in alge-
bra, geometry, and topology, is that we do not just study an object on
its own. We are almost always interested in the ways two objects of
the same type are related. For instance, in algebra, we study groups
as well as homomorphisms between two groups. Similarly, in topology,
we study topological spaces and continuous maps between two spaces.
The corresponding notion in our setting is that of smooth maps. We
will not need the full generality of maps between arbitrary manifolds;
instead, we only need maps from a manifold to Rm.

Definition 2.2. Let M be an n-manifold, and let f : M → Rm be a
continuous function. We say f is smooth if, for each chart (Uα, ϕα) of
M , the function f ◦ ϕ−1

α : Rn → Rm is infinitely differentiable.

Since Rm is a vector space, we can add two functions f, g : M → Rm

together, pointwise. Namely, we define f+g : M → Rm by (f+g)(p) =
f(p)+g(p). Similarly, for c ∈ R, we can multiply a function f by c. One
can check that the operations of addition and scalar multiplication take
smooth functions to smooth functions. In particular (skipping some
other details), the smooth functions M → Rm form a vector space over
R, which we denote by C∞(M,Rm).

Now consider a smooth map f : M → Rm. Let p ∈ M be a point,
and let (Uα, ϕα) be a chart such that p ∈ Uα. Also let (xi) be local
coordinates on Uα. Then we define

∂f

∂xi

(p) =
∂(f ◦ ϕ−1

α )

∂ui

(ϕα(p)).
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The motivation for this definition is that derivatives are local opera-
tions. To take the derivative of a function at a point on a n-manifold,
one can zoom in close enough and treat said function as a function on
Rn. Note that the notation on the left hand side does not mention the
chart. Indeed, the computation of partial derivatives is independent of
the choice of chart.

If we just write
∂f

∂xi

, we mean the function M → Rm which sends

p ∈ M to
∂f

∂xi

(p). This function is also smooth.

As an example, consider the map f : S1 → R which sends (x, y) ∈
S1 to x ∈ R. We claim this is smooth. For instance, the function

f ◦ ϕ−1
1 sends a real number t to

t2

t2 + 1
, and one can check that this is

an infinitely differentiable function. We invite the reader to compute
f ◦ ϕ−1

2 and check that it is also infinitely differentiable. In the chart

(U1, ϕ1), we compute
∂f

∂x1

(
1√
2
,
1√
2

)
to be

∂

∂u1

∣∣∣∣∣
u1=

√
2+1

(
u2
1

u2
1 + 1

)
=

1

4
(
√
2− 1).

As another exercise for the reader, compute
∂f

∂x1

(
1√
2
,
1√
2

)
in the

chart (U2, ϕ2). Both computations lead to the same number, indicating
that the definition of the derivative is independent of the choice of chart.

2.3. Tangent Space. In this subsection, we will introduce the last
piece of our setting: the tangent space to a point of a manifold. Intu-
itively, one can picture the numerous tangent lines to curves drawn in
a calculus class. However, a point on the tangent space corresponds to
something one may not expect: a differential operator.

Definition 2.3. LetM be an n-manifold, let p be a point onM , and let
x1, ..., xn be a local coordinate system coming from a chart containing
p. The tangent space to M at p, denoted TpM , is the vector space

over R spanned by the functions (or operators)
∂

∂x1

(p), ...,
∂

∂xn

(p) :

C∞(M,Rm) → Rm. Elements of TpM are called tangent vectors.

In other words, an element of TpM is an operator
n∑

i=1

ai
∂

∂xi

(p), which

takes in a smooth function f : M → Rm and spits out an element of
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Rm, namely
n∑

i=1

ai
∂f

∂xi

(p). One can intuitively think of a tangent vector

as a directional arrow sitting at a point p, and this arrow tells a function
how it will change if it moves away from p in the direction of that arrow.

3. Differential Forms

A differential form can be understood intuitively as an object which
lives on a manifold, and at each point of the manifold, takes in a certain
number of elements of the tangent space and gives back a real number.
In more fun terms, they “eat” tangent vectors. The number of tangent
vectors, k, a differential form “eats” does not change from point to
point. We call a differential form that “eats” k vectors a k-form.

Let us first define differential forms on Rn.

Definition 3.1. Consider Rn with its standard coordinate system
u1, ..., un. We say that the R-vector space of 0-forms on Rn, denoted
Ω0(Rn), is C∞(Rn,R). For k ∈ {1, ..., n}, the R-vector space of k-forms
on Rn, denoted Ωk(Rn), is the set of formal expressions∑

1≤i1<...<ik≤n

fi1...ikdui1 · · · duik ,

where the fi1...ik are elements of C∞(Rn,R). Given a k-form ω (in the
exact same notation as above), a point p in Rn, and k tangent vectors

vi =
n∑

j=1

ai,j
∂

∂uj

(p) ∈ TpRn for i ∈ {1, ..., k}, define ω(p)(v1, ..., vk) to

be ∑
1≤i1<...<ik≤n

fi1...ik(p)a1,i1 · · · ak,ik .

In particular, dui(p)

(
∂

∂uj

(p)

)
is 1 if and only if i = j, and 0 otherwise.

If k > n, we define Ωk(Rn) = {0}.

The length of this definition should not deter the reader. Remember
the intuition: forms “eat” tangent vectors. Here are some example
computations:
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ω = u2du1 + u1du2 ∈ Ω1(R2), p = (1, 2) ∈ R2, v1 = −5
∂

∂u1

(p) :

ω(p)(v1) = (u2du1 + u1du2)(1, 2)

(
−5

∂

∂u1

(1, 2)

)
= u2(1, 2) · (−5) = −10.

ω = u3du1du2, p = (1, 0,−1), v1 = π
∂

∂u1

(p) + e
∂

∂u3

(p), v2 = v1 :

ω(p)(v1, v2) = −1 · π · 0 = 0.

Returning to theory, we still must give a definition of a differential
form on a manifold, not just on Rn. However, knowing what a differ-
ential form on Rn is gives us almost the entire picture. More precisely,
we know what a differential form should be on any given chart of a
manifold. The full definition is as follows:

Definition 3.2. Given a manifold M with charts (Uα, ϕα), a differen-
tial form ω on M is a collection of differential forms ωα on Rn, one for
each chart of M , with a certain compatibility condition.

For simplicity, we will not worry ourselves with the compatibility
condition. As we progress, our computations and definitions will be on
a fixed chart of a manifold, with local coordinates (xi). In accordance,
the notation of a differential form will use symbols dxi instead of dui.

3.1. Exterior Derivative. So far, given a manifold M , we have a se-
quence of vector spaces Ωk(M). We now want to put these vector spaces
together into something called a chain complex. This involves giving
linear maps dk : Ωk(M) → Ωk+1(M) such that dk+1 ◦ dk : Ωk(M) →
Ωk+2(M) is the map which sends anything to 0. In practice, authors
may forgo the subscript and simply write d : Ωk(M) → Ωk+1(M), but
we will keep the subscript for clarity.

Before we can define these maps, we need to say something about
the ordering of the symbols dxi. In Definition 3.1, we defined a k-form
so that the symbols dxi are given in order. But what about something
like dx2dx1? We impose the condition that exchanging two symbols
dxi and dxj comes at the cost of a minus sign: dxidxj = −dxjdxi.
Furthermore, we impose the condition that dxidxi = 0. Intuitively,
one can think of the first condition as giving orientation to differential
forms; this idea is important for defining integration of forms. The
second condition mirrors how we treat “infinitesimals” in first order
approximation.
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Let us first define d0 : Ω
0(M) → Ω1(M). An element of Ω0(M), i.e.

a 0-form, is equivalent to the data of a smooth function f : M → R.
We define

d0(f) =
n∑

i=1

∂f

∂xi

dxi.

One can check that this map is linear. Next, given ω ∈ Ωk(M), say

ω =
∑

1≤i1<...<ik≤n

fi1...ikdxi1 · · · dxik in a chart, we define

dk(ω) =
∑

1≤i1<...<ik≤n

d0(fi1...ik)dxi1 · · · dxik .

This map is also linear.
As an example computation, consider the 1-form x2dx1 on R2. Then

d1(x2dx1) = d0(x2)dx1 = dx2dx1 = −dx1dx2. Similarly, d1(x
2
1dx1) =

2x1dx1dx1 = 0.
Each map dk is referred to as the exterior derivative. We mention

as an aside that in the case of R3, the maps dk are analogous to the
gradient, curl, and divergence from multivariable calculus. More details
of this are given on page 14 of [1].

In order to define the de Rham cohomology of a manifold, we must
verify that dk+1 ◦ dk = 0, i.e. dk+1 ◦ dk : Ωk(M) → Ωk+2(M) sends any
k-form to 0.

Proposition 3.3. The map dk+1 ◦ dk : Ωk(M) → Ωk+2(M) sends
ω ∈ Ωk(M) to 0.

Proof. Since the composition of linear maps is linear, we know that
dk+1 ◦ dk is linear. Thus, it suffices to check that dk+1(dk(ω)) = 0
for ω = fdxi1 · · · dxik . First, we have dk(ω) = d0(f)dxi1 · · · dxik =
n∑

i=1

∂f

∂xi

dxidxi1 · · · dxik . Then

dk+1(dk(ω)) =
n∑

i=1

n∑
j=1

∂2f

∂xj∂xi

dxjdxidxi1 · · · dxik .

For infinitely differentiable functions, the order of partial differentiation
does not matter. We also have dxjdxi = −dxidxj. Since the we are
taking a finite sum, we can exchange the order of summation. Thus,
we have

dk+1(dk(ω)) = −
n∑

j=1

n∑
i=1

∂2f

∂xi∂xj

dxidxjdxi1 · · · dxik .
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We can swap the names of the indices i and j, so that

dk+1(dk(ω)) = −
n∑

i=1

n∑
j=1

∂2f

∂xj∂xi

dxjdxidxi1 · · · dxik .

Thus dk+1(dk(ω)) = −dk+1(dk(ω)), so dk+1(dk(ω)) = 0. □

3.2. de Rham Cohomology.

Definition 3.4. The vector space of exact k-forms, denoted Bk(M),
is the image of dk−1 : Ω

k−1(M) → Ωk(M). In other words, a k-form ω
is exact if there is a (k − 1)-form τ such that ω = dk−1(τ). The vector
space of closed k-forms, denoted Zk(M), is the kernel of dk : Ω

k(M) →
Ωk+1(M). In other words, a k-form ω is closed if dk(ω) = 0.

As a corollary of Proposition 3.3, all exact k-forms are closed. In
other words, Bk(M) is a vector subspace of Zk(M). This allows us to
define their quotient.

Definition 3.5. The kth de Rham cohomology vector space of a man-
ifold M , denoted Hk(M), is the vector space Zk(M)/Bk(M).

As mentioned in the introduction, cohomology has the advantage
over homology in that it has a ring structure. In particular, by “ring
structure”, we mean a way to multiply elements of Hk(M) and Hℓ(M).
While the usual topological definition of the cohomology ring is rather
complicated, the ring structure for de Rham cohomology is already
built into what we have developed.

We can multiply k-forms and ℓ-forms by usual algebraic manipula-
tion; use the distributive property, and simplify by using the exchange
rule dxidxj = −dxjdxi. As an example, consider the 2-form x3dx1dx2

and the 1-form x2dx1 + x1dx2. Then

(x3dx1dx2)(x2dx1 + x1dx2) = x2x3dx1dx2dx1 + x1x3dx1dx2dx2

= −x2x3dx1dx1dx2 + x1x3dx1 · 0 = −x2x3 · 0 · dx2 + 0 = 0.

An element of Hk(M) is a coset [ω] = ω + Bk(M), represented by
some closed k-form ω. Given [ω] ∈ Hk(M) and [τ ] ∈ Hℓ(M), we
then define [ω][τ ] = [ωτ ]. One does need to make sure that this is well-
defined: namely that the product of two closed forms is closed, and that
the product of classes is independent of the choice of representatives.
However, we will not do this. For us, the development of theory ends
here.
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4. Results

We end this paper with a a few results that one can prove with the
machinery we have provided. The interested reader can consult [1] for
details.

Proposition 4.1 (Poincaré Lemma). Hk(Rn) is 1-dimensional if k = 0
and 0-dimensional otherwise.

This result tells us that cohomology of Rn is not very interesting.
This is why the development of manifolds is relevant. As another ex-
ample, we have that Hk(Sn) is 1-dimensional is k = 0 or k = n and
0-dimensional otherwise.

Proposition 4.2 (de Rham’s Theorem). There is an isomorphism be-
tween the de Rham cohomology ring of a manifold and its singular
cohomology ring.

Thus, our calculus-style calculations really do give us classical topo-
logical information.
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