MATH 7510 Homework 6

Andrea Bourque

November 2021

1 Problem 6a

Let A be a subspace of X with inclusion map $j: A \to X$ and a retraction $r: X \to A$. If $a_0 \in A$, show that the induced map r_* is surjective and that the induced map j_* is injective.

Proof. Let $[f]_A \in \pi_1(A, a_0)$. The loop f in A is also a loop in X, so $[f]_X$ is a well-defined element in $\pi_1(X, a_0)$. Furthermore, r(f(a)) = f(a) for all $a \in A$. Thus $r_*([f]_X) = [r(f)]_A = [f]_A$, showing that r_* is surjective.

Let $[f]_A \in \pi_1(A, a_0)$ be such that $j_*([f]_A) = [e]_X$, the class of the identity loop in X. But $j_*([f]_A) = [j(f)]_X = [f]_X$, since f is also a loop in X. Thus $f \sim_X e$ in X. If φ is a path homotopy from f to e, then $r(\varphi)$ is also a path homotopy from f to e, since it preserves the loops f and e, which are contained in A. Furthermore, all values of $r(\varphi)$ are contained in A. Thus $f \sim_A e$ in A, implying $[f]_A = [e]_A$, so j_* is injective (a homomorphism with trivial kernel is injective).

2 Problem 6b

Show that a retract of a Hausdorff space is closed.

Proof. Let X be Hausdorff and A a retract with inclusion j and retraction r. Let $x \in X - A$. Then $r(x) \in A$, so $x \neq r(x)$. Then there are disjoint neighborhoods U, V of x, r(x) respectively. Note that since $r(x) \in V$, $x \in r^{-1}(V)$, which is open by continuity. Then $W = U \cap r^{-1}(V)$ is a neighborhood of x. Suppose $a \in A \cap W$. Then $r(a) = a \in V$ and $a \in U$. This contradicts U, V being disjoint. Thus A and W are disjoint. W is a neighborhood of x contained in X - A, so A is closed.

3 Problem 6c

Let A be a subspace of X with inclusion map j and $a_0 \in A$. Suppose A is a deformation retract of X with map $H: X \times I \to X$. Show that the induced map j_* is an isomorphism.

Proof. The map r(x) = H(x,1) gives a retraction $X \to A$, so by 6a we know j_* is injective. It suffices to show j_* is surjective. Let $[f]_X \in \pi_1(X,a_0)$. Then $F: I \times I \to X$ given by F(t,s) = H(f(t),s) is a path homotopy from f to a loop g(t) = F(t,1) at a_0 in A. Indeed, F is a composition of continuous functions so it is continuous. It preserves the endpoints since $F(0,1) = H(f(0),1) = H(a_0,1) = a_0$ and $g(1) = F(1,1) = H(f(1),1) = H(a_0,1) = a_0$. It lies in A since H(x,1) lies in A for all x. Thus $f \sim_X g$, so $[f]_X = [g]_X$. Since g is a loop in $A, j_*([g]_A) = [j(g)]_X = [g]_X = [f]_X$, so j_* is surjective as desired. \square

4 Problem 6d

Show that if A is a deformation retract of X and B is a deformation retract of A, then B is a deformation retract of X.

Proof. Let H be a deformation retraction from X to A, and let G be a deformation retraction from A to B. Let $F: X \times I \to X$ be F(x,s) = G(H(x,s),s). F is continuous since it is the composition of continuous maps. F(x,0) = G(H(x,0),0) = G(x,0) = x. $F(x,1) = G(H(x,1),1) \in B$ since $H(x,1) \in A$ for all $x \in X$ and $G(x,1) \in B$ for all $x \in A$. Let $b \in B$. Then $b \in A$. F(b,s) = G(H(b,s),s) = G(b,s) = b, since H(b,s) = b by $b \in A$ and G(b,s) = b by $b \in B$. Thus F is a deformation retraction of X to B.

5 Problem 6f

a) Show that I and \mathbb{R} are contractible.

Proof. Let $i:I\to I$ be the identity map and $f:I\to I$ the constant map f(x)=0. Let $F:I\times I\to I$ be F(x,t)=(1-t)x. F is continuous since it is a polynomial in its variables. It is also well defined (i.e. $F(x,t)\in I$) since $0\le t\le 1$ implies $0\le 1-t\le 1$, and this with $0\le x\le 1$ implies $0\le (1-t)x\le 1$. F(x,0)=(1-0)x=x=i(x) and F(x,1)=(1-1)x=0=f(x), so F is a homotopy between i and f. Thus i is nullhomotopic and I is contractible.

The same proof holds for \mathbb{R} : let $i: \mathbb{R} \to \mathbb{R}$ be the identity map and $f: \mathbb{R} \to \mathbb{R}$ be the constant map f(x) = 0. Then $F: \mathbb{R} \times I \to \mathbb{R}$ defined by F(x,t) = (1-t)x is a homotopy between i and f, so \mathbb{R} is contractible.

b) Show that the retract of a contractible space is contractible.

Proof. Let X be contractible and let A be a retract of X with inclusion j and retraction r. Furthermore, let F be a homotopy between the identity map $i_X: X \to X$ and a constant map $f: X \to X$ given by $f(x) = x_0$. Let $a_0 = r(x_0)$. Let $i_A: A \to A$ be the identity map on A, and let $g: A \to A$ be the constant map $g(a) = a_0$. Let $G: A \times I \to A$ be G(a,t) = r(F(a,t)). G is continuous since it is a composition of continuous maps. $G(a,0) = r(F(a,0)) = r(i_X(a)) = r(a) = a$, since $F(x,0) = i_X(x)$ and F(a) = a for $a \in A$. $F(a,0) = i_X(a) = a$ and F(a,0) = a for $a \in A$. Thus F(a,0) = a and F(a,0) = a for $a \in A$. Thus F(a,0) = a for $a \in A$ for $a \in A$. Thus F(a,0) = a for $a \in A$ for $a \in A$. Thus F(a,0) = a for $a \in A$ for a