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Problem V1.4

(a) Let X and Y be Banach spaces. Prove that a theorem for £(X,Y") analogous

(b)

to Theorem VI.1 holds if YV is weakly sequentially complete (every weak
Cauchy sequence has a weak limit).

Prove that if a Banach space is reflexive, then it is weakly sequentially
complete.

Proof. (a) We prove that if T;, is a sequence in £(X,Y") such that a(T},x) con-

verges for all x € X and all @ € Y*, then T,, weakly converges. Note that
this reduces to Theorem VI.1 when X =Y = H is a Hilbert space. Fix
x € X. Since convergence implies Cauchy, we have o(T,z) is Cauchy for
all @« € Y*. In other words, T,,x is weakly Cauchy. By hypothesis, T,z
has a weak limit, which we denote by T'xz. By definition of weak limit, this
means we have a(T,z) converges to a(T'z) for all o € Y*. If we prove that
the map T : « — Tz is in L(X,Y), then the fact that a(T,,z) — o(Tz)
for all , o is exactly the condition that 7}, — T. Linearity of T follows
immediately from linearity of limits and linearity of functionals. I wasn’t
able to figure out how to show 7" is bounded, but Prof. Han said it is fine
if I don’t finish this one.

Let X be a reflexive Banach space, and let x,, be a weak Cauchy sequence.
Thus, for each o € X*, we have ax,, is Cauchy. Note that we can interpret
this by using the functionals %, € X** = L(X*,C). We have, for each
a € X*, that T,«a is Cauchy, and furthermore converges since C is com-
plete. Now, the elements of C* are given by multiplication by a scalar, so
we obviously have that ¢(Z,a) converges for all « € X* and all ¢ € C*. Fur-
thermore, C is weakly sequentially complete, since weak Cauchy sequences
in C are Cauchy and weak limits in C are limits; both statements are ob-
tained by taking the identity functional. Thus, by part (a), &, — & for
some T € X*™*; it is important to note that the weak convergence here is
to be interpreted as weak operator convergence. Since X is reflexive, we
indeed have that Z is represented by some x € X, i.e. Za = ax for « € X*.
We now claim that z, — x. It suffices to show that ax, — az for all



a € X*. Since &, — &, we have &,a0 — Za for all @ € X*, which exactly
means oz, — ax, as desired.
O



Problem VI.7

Give an example to show that the range of a bounded operator need not be
closed. Prove that if T is bounded, everywhere defined, and an isometry, then
the range of T is closed.

Proof. Consider the map T : oo — ¢oo given by T'((x;);) = (x;/i);. T is linear
because each map x — x/i is linear. T is bounded because |z;/i| < |z;], so
[1T((x:):)|] < ||(z:)i]|. Now, consider the sequence ((x; ;):);
= (1,v2,...,4/7,0,...) in €. Then T((zi;):) = (1,1/v2,...,1//7,0,...)
converges to y = (1,1/4/2,...,). However, y is not in the range of T, since
(1,/2,...) is not in £>°. Thus, the range of T is not closed.

Now suppose T is bounded, everywhere defined, and an isometry. Let x, be
a sequence such that y, = Tx, converges to a point y. In particular, y, is a
Cauchy sequence. Since T is an isometry, we have ||z, — || = ||T (2 — 2m)|]
= ||yn — Yml|, so z, is also Cauchy. Thus x, converges to some z. Since T is
continuous, we have Tz, converges to Tx. Thus Tx = y, so y is in the range of
T. In other words, the range of T is closed. O



Problem VI.8

(a) Let A be a self-adjoint bounded operator on a Hilbert space. Prove that the
eigenvalues of A are real and that the eigenvectors corresponding to distinct
eigenvalues are orthogonal.

(b) From the proof of Theorem VI.8 derive a universal (but A-dependent) bound
for the norm of the resolvent of a self-adjoint operator at a non-real A € C.

Proof. (a) Let v be an eigenvector (I will always use eigenvector to mean non-
zero) of A with eigenvalue A. Then

A(v,v) = (v, W) = (v, Av) = (Av,v) = (Av,v) = A(v,v).

Since (v,v) # 0, we have A = A, so A € R. Now let v, w be two eigenvectors
of A with distinct eigenvalues A, u. Then

Av,w) = (A, w) = (Av,w) = (v, Aw) = (v, pw) = p(v,w),

where in the first equality we use A € R. Since A # p, we must have
(v,w) = 0 as desired.

(b) In the proof of Theorem VI.8, it is shown that ||(A—AI)xz||> > Im(\)?||z||?.

Since A is non-real, A—AI is invertible by Theorem V1.8, so we get || Rx(A4)x|| <

1
m”m“ In other words, the desired bound is 1/|Im())|.
m
O



Problem VI.9

(a)

(b)

Let A be a self-adjoint operator on a Hilbert space H. Prove that ||A4|| =

sup |(Az,z)|.
[|z]|=1

Find an example which shows that the conclusion of (a) need not be true if
A is not self-adjoint.

Proof. (a) Let S = sup |(Az,x)|. First, note that |[(Az,y)| < ||Az|||ly|] <

[l=|[=1
[1A||llz|||ly]|, where the first inequality is Cauchy-Schwarz. In particular,
if ||z|] = 1, then |(Az,z)| < ||A]|. Thus ||A]| > S, so it suffices to show
[|A]| < S Now, note that

(z+y, Az + Ay) — (z — y, Az — Ay) = 2(z, Ay) + 2(y, Az)

=2(z, Ay) + 2(Az,y) = 2(x, Ay) + 2(x, Ay) = 4Re((x, Ay)).

Next, we have

(2, Az)| = [|«||*

X xT
B | PR
<|x|| |x||>’ =]

While the first step assumes z # 0, the combined inequality |(x, Az)| <
||z]|?S is still true when x = 0, since both sides will be 0. Now, there is a
constant ¢ with |¢| = 1 such that (z, Acy) = |(z, Ay)|; in particular, (z, Acy)
is real and non-negative. Using this, and assuming ||x|| = ||y|| = 1, we have

(Az, y)| = |(z, Ay)| = (2, Acy)
1

= 1((95 + cy, Az + Acy) — (z — cy, Az — Acy))

(

1 1
< (le+ eyl +[lv = eyl*)S = Sl + 2leyl])S = S,

<

(x + cy, Az + Acy)| + |(x — cy, Az — Acy)|)

N

where in the second-to-last step we use the parallelogram law. It follows
that ||(Az,—)|| < S. But ||Az|| = ||(Az,—)]||, so we get ||Az|| < S for all
[|z]| = 1; in other words, ||A|| < S as desired.

Consider C? with its usual Hilbert space structure. Let A = (8 (1)) A

is not self-adjoint, since the adjoint in C” is given by conjugate transpose,

and the conjugate transpose of A is ((1) 8) Now, clearly ||Az||? = |z2|? <

|71 |2+ |z2|? = ||z||?, and we have equality for z = 0), so ||A|| = 1. On the

1
other hand, |(Az, )| = |Za||x1| = |21]|72], and if 1 = ||z[|? = |21|* + |22/?,



then |z1||z2| < £ (|21|*+|x2|?) = § by the AM-GM inequality. In particular,
sup |(Az,z)| < § #1=]|A]].

[lzll=1

O



Problem VI.12

Let X be a Banach space and T € £(X). Then show that,

(a)
(b)

If X is in the residual spectrum of T, then A is in the point spectrum of 7”.

If A\ is in the point spectrum of T, then A is in either the point or the residual
spectrum of T”.

Proof. (a) An eigenvector for T' with eigenvalue A is a (non-zero) functional «

such that (T"a)v := a(Tv) is equal to Aaw for all v € X. We can rewrite
this as a((A —T)v) = 0 for all v € X. In other words, a vanishes on the
range of A — T. Since « is continuous, it must also vanish on the closure
of the range of A — T. By hypothesis, the closure of the range of A — T is
not X. By Hahn-Banach, we can find a non-zero o which vanishes on the
closure of the range of A — T, i.e. A is in the point spectrum of 7".

Let Tv = Ao for v # 0. Suppose A is not in the point spectrum of T”. If 3 is
in the range of A —T”, then there is a functional « such that 8 = (A —T")a.
In particular, fw = (A —=T")a)w = a((A—T)w) for w € X. It follows that
Bv = 0 for all 8 in the range of A — T”. It then follows that Sv = 0 for all
B3 in the closure of the range of A — T”. Since v # 0, there is a functional «
such that av # 0, by Hahn-Banach. Thus, the range of A — 7" is not dense,
s0 A is in the residual spectrum of T”.

O



