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Problem VI.4

(a) LetX and Y be Banach spaces. Prove that a theorem for L(X,Y ) analogous
to Theorem VI.1 holds if Y is weakly sequentially complete (every weak
Cauchy sequence has a weak limit).

(b) Prove that if a Banach space is reflexive, then it is weakly sequentially
complete.

Proof. (a) We prove that if Tn is a sequence in L(X,Y ) such that α(Tnx) con-
verges for all x ∈ X and all α ∈ Y ∗, then Tn weakly converges. Note that
this reduces to Theorem VI.1 when X = Y = H is a Hilbert space. Fix
x ∈ X. Since convergence implies Cauchy, we have α(Tnx) is Cauchy for
all α ∈ Y ∗. In other words, Tnx is weakly Cauchy. By hypothesis, Tnx
has a weak limit, which we denote by Tx. By definition of weak limit, this
means we have α(Tnx) converges to α(Tx) for all α ∈ Y ∗. If we prove that
the map T : x 7→ Tx is in L(X,Y ), then the fact that α(Tnx) → α(Tx)

for all x, α is exactly the condition that Tn
w−→ T . Linearity of T follows

immediately from linearity of limits and linearity of functionals. I wasn’t
able to figure out how to show T is bounded, but Prof. Han said it is fine
if I don’t finish this one.

(b) Let X be a reflexive Banach space, and let xn be a weak Cauchy sequence.
Thus, for each α ∈ X∗, we have αxn is Cauchy. Note that we can interpret
this by using the functionals x̃n ∈ X∗∗ = L(X∗,C). We have, for each
α ∈ X∗, that x̃nα is Cauchy, and furthermore converges since C is com-
plete. Now, the elements of C∗ are given by multiplication by a scalar, so
we obviously have that c(x̃nα) converges for all α ∈ X∗ and all c ∈ C∗. Fur-
thermore, C is weakly sequentially complete, since weak Cauchy sequences
in C are Cauchy and weak limits in C are limits; both statements are ob-
tained by taking the identity functional. Thus, by part (a), x̃n

w−→ x̃ for
some x̃ ∈ X∗∗; it is important to note that the weak convergence here is
to be interpreted as weak operator convergence. Since X is reflexive, we
indeed have that x̃ is represented by some x ∈ X, i.e. x̃α = αx for α ∈ X∗.
We now claim that xn

w−→ x. It suffices to show that αxn → αx for all
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α ∈ X∗. Since x̃n
w−→ x̃, we have x̃nα → x̃α for all α ∈ X∗, which exactly

means αxn → αx, as desired.
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Problem VI.7

Give an example to show that the range of a bounded operator need not be
closed. Prove that if T is bounded, everywhere defined, and an isometry, then
the range of T is closed.

Proof. Consider the map T : ℓ∞ → ℓ∞ given by T ((xi)i) = (xi/i)i. T is linear
because each map x 7→ x/i is linear. T is bounded because |xi/i| ≤ |xi|, so
||T ((xi)i)|| ≤ ||(xi)i||. Now, consider the sequence ((xi,j)i)j
= (1,

√
2, . . . ,

√
j, 0, . . . ) in ℓ∞. Then T ((xi,j)i) = (1, 1/

√
2, . . . , 1/

√
j, 0, . . . )

converges to y = (1, 1/
√
2, . . . , ). However, y is not in the range of T , since

(1,
√
2, . . . ) is not in ℓ∞. Thus, the range of T is not closed.

Now suppose T is bounded, everywhere defined, and an isometry. Let xn be
a sequence such that yn = Txn converges to a point y. In particular, yn is a
Cauchy sequence. Since T is an isometry, we have ||xn − xm|| = ||T (xn − xm)||
= ||yn − ym||, so xn is also Cauchy. Thus xn converges to some x. Since T is
continuous, we have Txn converges to Tx. Thus Tx = y, so y is in the range of
T . In other words, the range of T is closed.
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Problem VI.8

(a) Let A be a self-adjoint bounded operator on a Hilbert space. Prove that the
eigenvalues of A are real and that the eigenvectors corresponding to distinct
eigenvalues are orthogonal.

(b) From the proof of Theorem VI.8 derive a universal (but λ-dependent) bound
for the norm of the resolvent of a self-adjoint operator at a non-real λ ∈ C.

Proof. (a) Let v be an eigenvector (I will always use eigenvector to mean non-
zero) of A with eigenvalue λ. Then

λ(v, v) = (v, λv) = (v,Av) = (Av, v) = (λv, v) = λ(v, v).

Since (v, v) ̸= 0, we have λ = λ, so λ ∈ R. Now let v, w be two eigenvectors
of A with distinct eigenvalues λ, µ. Then

λ(v, w) = (λv,w) = (Av,w) = (v,Aw) = (v, µw) = µ(v, w),

where in the first equality we use λ ∈ R. Since λ ̸= µ, we must have
(v, w) = 0 as desired.

(b) In the proof of Theorem VI.8, it is shown that ||(A−λI)x||2 ≥ Im(λ)2||x||2.
Since λ is non-real, A−λI is invertible by Theorem VI.8, so we get ||Rλ(A)x|| ≤

1

|Im(λ)|
||x||. In other words, the desired bound is 1/|Im(λ)|.
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Problem VI.9

(a) Let A be a self-adjoint operator on a Hilbert space H. Prove that ||A|| =
sup

||x||=1

|(Ax, x)|.

(b) Find an example which shows that the conclusion of (a) need not be true if
A is not self-adjoint.

Proof. (a) Let S = sup
||x||=1

|(Ax, x)|. First, note that |(Ax, y)| ≤ ||Ax||||y|| ≤

||A||||x||||y||, where the first inequality is Cauchy-Schwarz. In particular,
if ||x|| = 1, then |(Ax, x)| ≤ ||A||. Thus ||A|| ≥ S, so it suffices to show
||A|| ≤ S Now, note that

(x+ y,Ax+Ay)− (x− y,Ax−Ay) = 2(x,Ay) + 2(y,Ax)

= 2(x,Ay) + 2(Ax, y) = 2(x,Ay) + 2(x,Ay) = 4Re((x,Ay)).

Next, we have

|(x,Ax)| = ||x||2
∣∣∣∣( x

||x||
, A

x

||x||

)∣∣∣∣ ≤ ||x||2S.

While the first step assumes x ̸= 0, the combined inequality |(x,Ax)| ≤
||x||2S is still true when x = 0, since both sides will be 0. Now, there is a
constant c with |c| = 1 such that (x,Acy) = |(x,Ay)|; in particular, (x,Acy)
is real and non-negative. Using this, and assuming ||x|| = ||y|| = 1, we have

|(Ax, y)| = |(x,Ay)| = (x,Acy)

=
1

4
((x+ cy,Ax+Acy)− (x− cy,Ax−Acy))

≤ 1

4
(|(x+ cy,Ax+Acy)|+ |(x− cy,Ax−Acy)|)

≤ 1

4
(||x+ cy||2 + ||x− cy||2)S =

1

4
(2||x||2 + 2||cy||2)S = S,

where in the second-to-last step we use the parallelogram law. It follows
that ||(Ax,−)|| ≤ S. But ||Ax|| = ||(Ax,−)||, so we get ||Ax|| ≤ S for all
||x|| = 1; in other words, ||A|| ≤ S as desired.

(b) Consider C2 with its usual Hilbert space structure. Let A =

(
0 1
0 0

)
. A

is not self-adjoint, since the adjoint in Cn is given by conjugate transpose,

and the conjugate transpose of A is

(
0 0
1 0

)
. Now, clearly ||Ax||2 = |x2|2 ≤

|x1|2+ |x2|2 = ||x||2, and we have equality for x =

(
0
1

)
, so ||A|| = 1. On the

other hand, |(Ax, x)| = |x2||x1| = |x1||x2|, and if 1 = ||x||2 = |x1|2 + |x2|2,
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then |x1||x2| ≤ 1
2 (|x1|2+|x2|2) = 1

2 by the AM-GM inequality. In particular,
sup

||x||=1

|(Ax, x)| ≤ 1
2 ̸= 1 = ||A||.
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Problem VI.12

Let X be a Banach space and T ∈ L(X). Then show that,

(a) If λ is in the residual spectrum of T , then λ is in the point spectrum of T ′.

(b) If λ is in the point spectrum of T , then λ is in either the point or the residual
spectrum of T ′.

Proof. (a) An eigenvector for T ′ with eigenvalue λ is a (non-zero) functional α
such that (T ′α)v := α(Tv) is equal to λαv for all v ∈ X. We can rewrite
this as α((λ − T )v) = 0 for all v ∈ X. In other words, α vanishes on the
range of λ − T . Since α is continuous, it must also vanish on the closure
of the range of λ − T . By hypothesis, the closure of the range of λ − T is
not X. By Hahn-Banach, we can find a non-zero α which vanishes on the
closure of the range of λ− T , i.e. λ is in the point spectrum of T ′.

(b) Let Tv = λv for v ̸= 0. Suppose λ is not in the point spectrum of T ′. If β is
in the range of λ−T ′, then there is a functional α such that β = (λ−T ′)α.
In particular, βw = ((λ−T ′)α)w = α((λ−T )w) for w ∈ X. It follows that
βv = 0 for all β in the range of λ − T ′. It then follows that βv = 0 for all
β in the closure of the range of λ− T ′. Since v ̸= 0, there is a functional α
such that αv ̸= 0, by Hahn-Banach. Thus, the range of λ− T ′ is not dense,
so λ is in the residual spectrum of T ′.

7


