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Problem 13

Use the uniform boundedness principle to provide an alternative proof of the
Hellinger-Toeplitz theorem.

Proof. Let A be a self-adjoint operator on a Hilbert space H. Consider the
family F of bounded linear transformations (Ax, ·) for ||x|| = 1. Then for each
y ∈ H and all x ∈ H such that ||x|| = 1, we have |(Ax, y)|= |(x,Ay)| ≤ ||x||||Ay||
= ||Ay||, where the inequality is Cauchy-Schwarz. Thus {|(Ax, y)| : ||x|| = 1} is
bounded for each y. Thus the family F satisfies the hypotheses of the uniform
boundedness principle. We conclude that {||(Ax, ·)|| : ||x|| = 1} is bounded. But
||(Ax, ·)|| = ||Ax||, so {||Ax|| : ||x|| = 1} is bounded. Thus, A is bounded.
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Problem 15

Let H be a separable Hilbert space with an orthonormal basis {xn}. Let {yn}
be a sequence of elements of H. Prove that the following two statements are
equivalent:

(a) (x, yn) → 0 as n → ∞ for all x ∈ H.

(b) (xm, yn) → 0 as n → ∞ for each m, and {||yn||} is bounded.

Proof. (a) implies (b): Of course we have (xm, yn) → 0 for each m. Now con-
sider the family F of bounded linear transformations (yn, ·). For each x ∈ H,
we have |(x, yn)| = |(yn, x)| is a sequence of real numbers that converges to 0, so
{|(yn, x)|} is bounded. Thus, by the uniform boundedness principle, {||(yn, ·)||}
= {||yn||} is bounded.

(b) implies (a): Let M > 0 be such that ||yn|| < M for all n. Let x =
∑

cmxm.
Then ||x||2 =

∑
|cn|2. Let ε > 0, and let N be large so that ||x− zN || < ε/M ,

where zN =
∑

m≤N

cmxm. Then (zN , yn) =
∑

m≤N

cm(xm, yn) by sesquilinearity

and continuity of the inner product. Since this is a finite linear combination of
terms that go to 0, we have (zN , yn) → 0. Now |(x, yn)−(zN , yn)|= |(x−zN , yn)|
≤ ||x− zN ||||yn|| < ε. Thus |(x, yn) | < ε+ |(zN , yn)|. Since |(zN , yn)| → 0, and
ε is arbitrary, we have (x, yn) → 0 as desired.

2



Problem 16

A subset S of a Banach space X is called weakly bounded iff for all λ ∈ X∗,
sup
x∈S

|λ(x)| < ∞. S is called strongly bounded iff sup
x∈S

||x|| < ∞. Prove that these

conditions are equivalent.

Proof. Suppose S is strongly bounded. Let λ ∈ X∗. Then sup
x∈S

|λ(x)| ≤

sup
x∈S

||λ||||x|| = ||λ|| sup
x∈S

||x|| < ∞. Thus S is weakly bounded.

Suppose S is weakly bounded. Note that the statements sup
x∈S

|λ(x)| < ∞ and

sup
x∈S

||x|| < ∞ are the same as the statements {|λ(x)| : x ∈ S} is bounded and

{||x|| : x ∈ S} is bounded. With this reframing in mind, we aim to apply the
uniform boundedness principle. By Theorem III.4, there is an injective norm-
preserving map X → X∗∗ which sends x to x̃ : λ 7→ λ(x). Let F be the family
of bounded linear maps x̃ for x ∈ S. Then, by hypothesis, for each λ ∈ X∗,
we have {|x̃(λ)| : x̃ ∈ F} is bounded, since |x̃(λ)| = |λ(x)|. Therefore, F
satisfies the hypothesis of the uniform boundedness principle, so {||x̃|| : x̃ ∈ F}
is bounded. Since the map x 7→ x̃ is norm-preserving, we have {||x|| : x ∈ S} is
bounded, as desired.
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Problem 18

Extend the Hellinger-Toeplitz theorem to include pairs of operators A,B satis-
fying (Ax, y) = (x,By).

Proof. We show that A and B are bounded via the closed graph theorem. First,
suppose xn → x and Bxn → y. Then for any z ∈ H, we have (z, y) = (z,Bxn)
= (Az, xn) → (Az, x) = (z,Bx), where we have used continuity of inner product.
This implies y − Bx is orthogonal to all elements in H, so it is 0. Thus B is
bounded. Now suppose Axn → y. Then for any z ∈ H, we have (y, z) = (Axn, z)
= (xn, Bz) → (x,Bz) = (Ax, z), so y = Ax. Thus A is bounded.
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Problem 19

Let X be a Banach space in either of the norms || · ||1 or || · ||2. Suppose that
|| · ||1 ≤ C|| · ||2 for some C. Prove that there is a D with || · ||2 ≤ D|| · ||1.

Proof. Consider the identity map (X, || · ||2) → (X, || · ||1). By hypothesis, this
map is bounded. It is obviously a linear bijection. By the inverse mapping
theorem, the identity map (X, || · ||1) → (X, || · ||2) is bounded, which translates
to || · ||2 ≤ D|| · ||1 for some D.
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