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Problem 1

(a) Prove that an inner product can be recovered from its norm by the polar-
ization identity:

(x, y) =
1

4
(||x+ y||2 − ||x− y||2 − i||x+ iy||2 + i||x− iy||2).

(b) Prove that a normed linear space is an inner product space (i.e. that the
form defined above is actually an inner product) if and only if the norm
satisfies the parallelogram law.

Proof. (a) This comes down to expanding everything on the right hand side via
||z||2 = (z, z) and sesquilinearity. For instance,

||x+ y||2 = (x, x) + (x, y) + (y, x) + (y, y),

−||x− y||2 = −(x, x) + (x, y) + (y, x)− (y, y),

−i||x+ iy||2 = −i(x, x) + (x, y)− (y, x)− i(y, y),

i||x− iy||2 = i(x, x) + (x, y)− (y, x) + i(y, y).

We can see that the terms involving (x, x), (y, x), (y, y) cancel out when we
add up everything, while all of the (x, y) terms accumulate to give 4(x, y),
as desired.

(b) First suppose that we have an inner product space. To verify the paral-
lelogram, we can use the same strategy as above; expand the expressions
||x + y||2 and ||x − y||2 via sesquilinearity of the inner product, and then
observe the desired cancellations. As above,

||x+ y||2 = (x, x) + (x, y) + (y, x) + (y, y),

||x− y||2 = (x, x)− (x, y)− (y, x) + (y, y),

so ||x+ y||2 + ||x− y||2 = 2(x, x) + 2(y, y) = 2||x||2 + 2||y||2.
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Now suppose that we are given a normed linear space whose norm satisfies
the parallelogram law. We will show that (x, y) as defined by the left hand
side of the polarization identity satisfies each of the conditions to be an
inner product.

(i) We want to show (x, x) ≥ 0 with equality if and only if x = 0. We have

(x, x) =
1

4
(||2x||2 − ||0||2 − i||(1 + i)x||2 + i||(1− i)x||2)

=
1

4
(4||x||2 − 2i||x||2 + 2i||x||2) = ||x||2.

By definition of norm, ||x||2 ≥ 0 with inequality if and only if x = 0, so
we are done.

(ii) We want to show (x, y+z) = (x, y)+(x, z). The strategy will be to add and
subtract terms in the expression (x, y+ z) in order to get pairs of terms to
which we can apply the parallelogram law; I have colored matching terms.
We have

4(x, y + z) = ||x+ y + z||2 + ||x− y + z||2

−(||x− y − z||2 + ||x− y + z||2)
−i(||x+ iy + iz||2 + ||x− iy + iz||2)
+i(||x− iy − iz||2 + ||x− iy + iz||2),

and applying the parallelogram on each line gives

4(x, y + z) = 2(||x+ z||2 + ||y||2)
−2(||x− y||2 + ||z||2)

−2i(||x+ iz||2 + ||iy||2)
+2i(||x− iy||2 + ||iz||2).

Since (x, y + z) is symmetric in y and z, we can swap them on the right
hand side to get

4(x, y + z) = 2(||x+ y||2 + ||z||2)
−2(||x− z||2 + ||y||2)

−2i(||x+ iy||2 + ||iz||2)
+2i(||x− iz||2 + ||iy||2).

Now we will add the previous two equations together. The left hand side
is just 8(x, y + z). On the right hand side, all of the terms in the right
column (on the right side of each +) cancel each other out; I have colored
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matching terms. We get

8(x, y + z) = 2(||x+ y||2 + ||x+ z||2)
−2(||x− y||2 + ||x− z||2)

−2i(||x+ iy||2 + ||x+ iz||2)
+2i(||x− iy||2 + ||x− iz||2)

= 8(x, y) + 8 (x, z) .

Thus (x, y + z) = (x, y) + (x, z) as desired.

(iii) We want to show (x, αy) = α(x, y) for scalars α. This is obviously true for
α = 1. Using the previous property with y = z gives (x, 2y) = 2(x, y). By
induction, we have (x, ny) = n(x, y) for positive integers n. For n = 0, we
have

(x, 0y) = (x, 0) =
1

4
(||x||2 − ||x||2 − i||x||2 + i||x||2) = 0 = 0(x, y).

For n = −1, we have

(x,−y) =
1

4
(||x− y||2 − ||x+ y||2 − i||x− iy||2 + i||x+ iy||2)

= −1

4
(||x+ y||2 − ||x− y||2 − i||x+ iy||2 + i||x− iy||2) = −(x, y).

By combining this with the result for positive integers, we have (x, ny) =
n(x, y) for all integers n. For non-zero integer n, we have

(x,
1

n
y) =

1

n
· n(x, 1

n
y) =

1

n
(x, y).

Thus (x, αy) = α(x, y) for all α ∈ Q. Since the norm is continuous,
(x, y) must also be continuous. Since real numbers are limits of rational
numbers, we then have (x, αy) = α(x, y) for all α ∈ R. Finally, we show
that (x, iy) = i(x, y):

(x, iy) =
1

4
(||x+ iy||2 − ||x− iy||2 − i||x− y||2 + i||x+ y||2)

= i · 1
4
(||x+ y||2 − ||x− y||2 − i||x+ iy||2 + i||x− iy||2) = i(x, y).

Thus, (x, αy) = α(x, y) for all α ∈ C.

(iv) We want to show (x, y) = (y, x). This is simple: norms are real, so the
only change upon conjugating (y, x) is changing the signs of the two terms
with i in the front. We will also use || − z||2 = || ± iz||2 = ||z||2, which
follows since | − 1|2 = | ± i|2 = 1 and ||αz|| = |α|||z||. We have

(y, x) =
1

4
(||y + x||2 − ||y − x||2 − i||y + ix||2 + i||y − ix||2)

=
1

4
(||x+ y||2 − ||x− y||2 − i||x− iy||2 + i||x+ iy||2).
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As discussed, conjugating this involves changing the signs of the two terms
with i in the front, which evidently gives (x, y):

(y, x) =
1

4
(||x+ y||2 − ||x− y||2 + i||x− iy||2 − i||x+ iy||2)

=
1

4
(||x+ y||2 − ||x− y||2 − i||x+ iy||2 + i||x− iy||2) = (x, y).
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Problem 2

Let H be a Hilbert space, M a closed subspace of H, and suppose x ∈ H. Let
y, z ∈ M be two elements closest to x. Then y = z.

Proof. Let d = ||x − y|| = ||x − z||. By hypothesis, for any w ∈ M, we have
d ≤ ||x−w||2. In particular, this is true for w = (y+z)/2. By the parallelogram
law,

||y − z||2 = ||(x− y)− (x− z)||2 = 2||x− y||2 + 2||x− z||2 − ||2x− (y + z)||2,

and by the above inequality, we have

||y − z||2 = 4d2 − 4||x− (y + z)/2||2 ≤ 4d2 − 4d2 = 0.

Thus y = z.
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Problem 3

Let {Sα}α∈A be a linearly ordered collection of orthonormal sets in a Hilbert
space. Prove that S =

⋃
α∈A

Sα is an orthonormal set.

Proof. Let x ∈ S. Then x ∈ Sα for some α ∈ A. Since Sα is an orthonormal
set, we know (x, x) = 1. Thus (x, x) = 1 for all x ∈ Sα. Now let y be another
element of S, different from x. There is some β ∈ A such that y ∈ Sβ . Since
{Sα}α∈A is linearly ordered, either Sα ⊆ Sβ or Sβ ⊆ Sα. Either way, we find
that x, y are elements of the same orthonormal set, meaning (x, y) = 0. Thus
(x, y) = 0 for all distinct elements of S. Thus S is an orthonormal set.
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Problem 4

(a) Let V be an inner product space. Prove that the inner product can be
extended to its completion Ṽ as follows: First, show that if x, y ∈ Ṽ ,
xn, yn ∈ V , and xn → x, yn → y, then (xn, yn) converges. Then define
(x, y) = limn→∞(xn, yn) and show that it is independent of the choice of
convergent sequences. Finally, show that (·, ·) is an inner product on Ṽ .

(b) Prove the statement in (a) by applying the BLT theorem twice.

Proof. (a) Since xn and yn are convergent sequences, we have ||xn−xm||, ||yn−
ym|| < ε for arbitrary ε > 0 and large enough n,m. Also, for large enough
n, we can bound ||xn|| and ||yn||. For convenience, let dx = xn − xm and
dy = yn − ym. We have

|(xn, yn)− (xm, ym)| ≤ |(dx, dy)|+ |(xm, dy)|+ |(dx, ym)|
≤ ||dx|| · ||dy||+ ||xm|| · ||dy||+ ||dx|| · ||ym||,

where the first inequality follows from linearity of inner product, and the
second inequality is Cauchy-Schwarz. As previously mentioned, we can
bound ||xm|| and ||ym|| and make ||dx||, ||dy|| as small as we want. Thus
(xn, yn) is Cauchy, and since Ṽ is complete, it converges to some element
which we denote by (x, y).

Of course, we should check that (x, y) depends only on x, y, not on the se-
quences xn, yn we chose. If we chose other sequences x′

n, y
′
n that converge to

x and y respectively, it suffices to show that |(xn, yn)−(x′
n, y

′
n)| converges to

0. Indeed, by the same method, we will get three terms involving norms of
the sequence terms and norms of the differences xn−x′

n, yn−y′n. The former
terms are bounded and the latter terms can be made as small as we wish,
since both terms on the right hand side ||xn − x′

n|| ≤ ||xn − x||+ ||x− x′
n||

can be made as small as we want by definition. Thus (xn, yn) and (x′
n, y

′
n)

get arbitrarily close, meaning (x′
n, y

′
n) must get arbitrarily close to (x, y).

Linearity in the second variable follows from linearity of limits. (x, y) =
(y, x) follows from continuity of complex conjugation (we can think of it as
a linear map R2 → R2 with bound 1). (x, x) ≥ 0 follows because [0,∞) is
closed; (x, x) = lim(xn, xn) is the limit of things in [0,∞). Finally, suppose
(x, x) = 0. This means for some sequence xn ∈ V converging to x, we have
(xn, xn) converging to 0. By definition, this means that ||xn|| = ||xn − 0||
converges to 0, so xn converges to 0.

(b) Fix x ∈ V . Then (x, ·) is a linear transformation V → C by definition,
and it is bounded by Cauchy-Schwarz. By the BLT theorem, there is a
unique extension of (x, ·) to a bounded linear transformation on Ṽ with the
same bound. Now for fixed y ∈ Ṽ , we have (·, y) is a linear transformation
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V → C. It is bounded because |(x, y)| ≤ ||x|| · ||y|| by the previous usage of
BLT. Thus we can apply BLT again to get (x, y) for x, y ∈ Ṽ . We take the
conjugate of this to get (·, ·) on Ṽ . Now, the proof of BLT shows that in
fact (x, y) for x, y ∈ Ṽ is defined exactly as in part (a), so we have already
done the hard work to show that this is indeed an inner product.
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Problem 5

Let V be an inner product space and let {xn}Nn=1 be an orthonormal set. Prove
that ∣∣∣∣∣

∣∣∣∣∣x−
N∑

n=1

cnxn

∣∣∣∣∣
∣∣∣∣∣

is minimized by choosing cn = (xn, x).

Proof. Set cn = (xn, x). Let X = x −
∑

cnxn. By linearity, we see that
(xn, X) = 0 for all n. Let {an} be any other set of N complex numbers. We
need a slightly modified version of the Pythagorean theorem given in the book.
Namely, if u, v are orthogonal, then ||u+v||2 = ||u||2+ ||v||2; this follows simply
by expanding the definition of norm and using linearity. We then have∣∣∣∣∣

∣∣∣∣∣x−
N∑

n=1

anxn

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣X +

N∑
n=1

(cn − an)xn

∣∣∣∣∣
∣∣∣∣∣
2

= ||X||2 +

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

(cn − an)xn

∣∣∣∣∣
∣∣∣∣∣
2

≥ ||X||2.

Taking square roots gives the desired claim.
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Problem 6

Let M be any linear subset of a Hilbert space H. Prove that M⊥ is a closed
linear subspace and that M = (M⊥)⊥.

Proof. Let (xn) be a sequence of elements in M⊥, and suppose xn → x ∈ H.
Let y ∈ M. If y = 0, then of course (x, y) = 0. Suppose y ̸= 0, let ε > 0, and let
N be an integer such that n > N implies ||x− xn|| < ε/||y||. Then for n > N ,
(x, y) = (x−xn, y)+(xn, y) = (x−xn, y), and |(x−xn, y)| ≤ ||x−xn|| · ||y|| < ε,
so |(x, y)| < ε for all ε > 0. Thus (x, y) = 0. Since y is arbitrary, this shows
x ∈ M⊥, i.e. M⊥ is closed.

ThatM⊥ is linear follows from the properties of the inner product: If x1, . . . , xn ∈
M⊥, c1, . . . , cn ∈ C, and y ∈ M, then (y,

∑
cnxn) =

∑
cn(y, xn) =

∑
0 = 0.

By definition, M ⊆ (M⊥)⊥. By the above result, (M⊥)⊥ is closed. Thus M ⊆
(M⊥)⊥. In order to show the reverse inclusion, we first show that M⊥ = M⊥

.

Obviously, M⊥ ⊆ M⊥, since M ⊆ M. On the other hand, M⊥ ⊆ M⊥
by

continuity of inner products: If a sequence of elements xi ∈ M converges to
some x ∈ M and y ∈ M⊥, then (x, y) = (limxi, y) = lim(xi, y) = lim 0 = 0.
We then have two decompositions: H = M ⊕ M⊥ and H = (M⊥)⊥ ⊕ M⊥.
Let x ∈ (M⊥)⊥. By the first decomposition, x = y + z for y ∈ M and
z ∈ M⊥. But we already showed that M ⊆ (M⊥)⊥, so y ∈ (M⊥)⊥. By the
second decomposition, we must then have z = 0 and x = y ∈ M. This proves
(M⊥)⊥ ⊆ M, as desired.
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Problem 7

LetM be a subspace of a Hilbert spaceH. Let f : M → C be a linear functional
on M with bound C. Prove that there is a unique extension of f to a continuous
linear functional on H with the same bound.

Proof. Note that the closure M of M in H is in fact the completion of M.
By the BLT theorem, we get a unique extension of f to a linear functional

on M with the same bound C. Next, we set f to be 0 on M⊥
. By projection

theorem, this defines a linear functional onH, and it clearly has the same bound.

To show this is unique, we only need to consider the possible extensions from
M, thanks to BLT. If M = H, we are done. Since M is a Hilbert space, it
has an orthonormal basis {xα}α∈A, and this extends to an orthonormal basis
{xβ}β∈B , where A ⊂ B. Since bounded linear transformations are linear and
continuous, they are determined by their values on an orthonormal basis. So,
we must show that f(xβ) = 0 for all β ∈ B \A.

Let us take care of a special case first. Suppose f is the 0 functional on M.
Then its operator norm (minimal bound C) onM is 0. Conversely, any bounded
linear functional with bound 0 is of course 0. Thus, the only way to extend f
to a bounded linear functional on H with the same bound is to set f = 0 on
M. We henceforth suppose f is not the 0 functional on M.

Define cβ = f(xβ) for all β ∈ B, and suppose this defines a bounded linear
functional on H with the same bound C. Suppose cβ ̸= 0 for some β ∈ B \ A.
Let x ∈ M be such that f(x) ̸= 0. Suppose that the bound C is in fact taken
to be the operator norm of f on M. Then an appropriate choice of x can make
C2||x||2 − |f(x)|2 as small as we want. At the same time, we can also make
|f(x)| as large as we want. Furthermore, by multiplying x by an appropriate
scalar, we can assume f(x) > 0. Next, choose a ∈ C so that f(axβ) = acβ > 0.
Hence |f(x+ axβ)| = f(x) + acβ . Then the bound gives

f(x)2 + 2acβf(x) + a2c2β ≤ C2||x+ axβ ||2 = C2||x||2 + C2|a|2.

Note that the equality follows from the Pythagorean theorem; x and xβ are
orthogonal. Then

f(x) ≤
(
(C2||x||2 − f(x)2) + C2|a|2 − a2c2β

)
/(2acβ).

As previously stated, C2||x||2 − f(x)2 can be made as small as we want, so in
fact we get f(x) ≤ (C2|a|2 − a2c2β)/(2acβ). But the two sides of the inequality
are independent, and as mentioned before, we can make f(x) as large as we
want! Therefore, f so defined cannot have bound C, and this contradiction
arose from the assumption cβ ̸= 0. Thus we are done.
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Problem 8

Prove that L2(R) is separable.

Proof. The space of countable Q[i]-linear combinations of indicators of open
and/or closed intervals with endpoints in Q is countable and dense in L2(R).
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Problem 9

Show that the unit ball in an infinite dimensional Hilbert space H contains
infinitely many disjoint translates of a ball of radius

√
2/4. Conclude that

one cannot have a nontrivial (non-zero and locally finite) translation invariant
measure on an infinite dimensional Hilbert space.

Proof. Let {xi} be an orthonormal basis for H. Since H is infinite dimensional,
there must be infinitely many xi. For convenience, let r =

√
2/4. We will

show that the balls Bi := Br((1 − r)xi) are all disjoint. To that end, suppose
y ∈ Bi ∩Bj . Write y =

∑
k

akxk. Then we have

|ai − (1− r)|2 +
∑
k ̸=i

|ak|2 < r2,

and the similar inequality for the index j. Using ||y||2 =
∑
k

|ak|2, we can rewrite

the inequality as

||y||2 < 2r − 1 + 2(1− r)Re(ai).

Now, let ai = a+ ci, aj = b+di. Since ||y||2 ≥ |ai|2+ |aj |2 = a2+ b2+ c2+d2 ≥
a2, b2, we have

a2 < 2r − 1 + 2(1− r)a,

b2 < 2r − 1 + 2(1− r)b.

By the quadratic formula, we find that these conditions impose 1−2r < a, b < 1.
But then ||y||2 ≥ a2 + b2 > 2(1 − 2r)2, and combining this with an earlier
inequality, we get

2(1− 2r)2 < 2r − 1 + 2(1− r)a,

and similarly for b. Solving these gives

(3− 4r)(1− 2r)

2(1− r)
< a, b.

At this point, we see that we can keep iterating this process to get new lower
bounds for a and b. It remains to show that these bounds are increasing. Note
that we have a direct formula for the new bound: If C < a, b, then

2C2 + 1− 2r

2(1− r)
< a, b.

So we are studying the iterations of the function f(C) =
2C2 + 1− 2r

2(1− r)
, with

starting value C0 = 1− 2r. By hand or by calculator, we can see that C6 > 1.
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But earlier we established that a, b < 1, so we have a contradiction! This shows
that Bi ∩ Bj = ∅. Since there is one ball for each basis element, and we have
infinitely many basis elements, we are done.

Now, we haven’t yet shown that each Bi is contained in the unit ball B1(0),
so let us do that now. In the above work, we showed that if y ∈ Bi, then
||y||2 < 2r − 1 + 2(1 − r)a for some real number a satisfying a < 1. Thus
||y||2 < 2r − 1 + 2(1− r) = 1 as desired.

If one had a locally finite translation invariant measure on H, then for r > 0
small enough, Br(0) would have to be finite measure. However, by the above
result, r would contain infinitely many copies of Br

√
2/4(0), contradicting finite-

ness unless the balls had measure 0, which would imply H has measure 0 by
upper continuity of measures.
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Problem 10

Suppose Ω is a compact metric space with metric ρ and some measure µ. Let
T be a measure-preserving ergodic transformation with the additional property
that ρ(Tx, Ty) = ρ(x, y). Show that if f is a continuous function on Ω, then

(1/N)
∑N−1

n=0 f(Tnw) converges uniformly to
∫
Ω
fdµ.

Hint: mean ergodic and Ascoli theorems.

Proof. We first show that the family of functions MNf defined by

(MNf)(w) =
1

N

N−1∑
n=0

f(Tnw)

is uniformly equicontinuous. Fix w′ ∈ Ω let ε > 0. We want to show that there
is δ > 0 such that for all w ∈ Ω and all N > 0, we have ρ(w,w′) < δ implies
|(MNf)(w)− (MNf)(w′)| < ε. This follows from a kind of ε/3 argument using
all of our hypotheses.

Since the family of functions MNf is uniformly equicontinuous, to show that
Mnf →

∫
Ω
fdµ uniformly is equivalent to showing it pointwise.
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Problem 11

Let {xα}α∈A be an orthonormal basis for a Hilbert space. Let
∑
α∈A

|cα|2 < ∞.

Prove that
∑
α∈A

cαxα converges and is independent of the order of summation.

Proof. Note to reader: I will use “countable” for “at most countable”. Since∑
α∈A

|cα|2 < ∞, the set B = {α ∈ A | cα ̸= 0} is countable. Indeed, if it wasn’t,

then one of the sets Bn = {α ∈ A | |cα|2 > 1
n} would be uncountable, since if

they were all countable, we would have that B is countable union of countable
sets, hence countable. If Bn is uncountable, then

∑
α∈A

|cα|2 ≥
∑

α∈Bn

|cα|2 >

∞∑
j=1

1

n
= ∞,

a contradiction. Thus B is countable. Choose two orderings α1, . . . , and β1, . . . ,
for B. So that we don’t have to deal with the cases of B being finite and infinite
separately, we will treat the infinite case and say that if B has only n elements,
that cαi

= cβi
= 0 for i > n. Now, since the summands of

∑
α∈A

|cα|2 are non-

negative, the sum is independent of the ordering. In particular, the sequence
n∑

j=1

|cαj |2 converges, so that the differences
n∑

j=m

|cαj |2 can be made arbitrarily

small for sufficiently large m < n. Now, consider the sequence
n∑

j=1

cαj
xαj

. By

the Pythagorean theorem, the norm squared of the differences
n∑

j=m

cαj
xαj

is

n∑
j=m

|cαj |2, which can be made arbitrarily small as previously noted. Thus the

sequence
n∑

j=1

cαjxαj is Cauchy, hence converges to some value x.

By the same argument, the sequence
n∑

j=1

cβj
xβj

converges to some element y.

We want to show x = y. By linearity and continuity of the inner product, we
see that for all α ∈ A, (xα, x) = cα = (xα, y). By the proof of Theorem II.6
in the book, we then have x =

∑
α∈A

cαxα = y, no matter what order is used to

define the sum in the middle.
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