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Problem 1

Let (X, d) be a metric space. Prove the following;:

(a)
(b)
(¢)

(d)
()

A set O is open iff X \ O is closed.

T 9y 4 iff for each neighborhood N of z, there exists an M so that m > M
implies x,, € N.

The set of interior points of a set is open.
The union of a set E with its limit points is a closed set.

A set is open if and only if it is a neighborhood of each of its points.

Proof. (a) Let O be open. Let x be a limit point of X \ O. Suppose z € O.

Then there is r > 0 such that B(z;r) C O. Then B(z;7) N (X \ O) = &,
which contradicts the hypothesis that x is a limit point of X \ O. Thus
x ¢ O, ie. z € X\ O. Since x was an arbitrary limit point of X \ O, it
follows that X \ O contains all of its limit points, so it is closed.

Conversely, let X \ O be closed. Let x € O. Since z ¢ X \ O and X \ O
contains its limit points, = is not a limit point of X \ O. Therefore, there is
some r > 0 such that B(z;r) N ((X \ 0)\ {z}) = @. Since x ¢ X \ O, we
have (X \ O)\ {z} = X\ O. Thus B(z;r)N (X \ O) = @. This is equivalent
to B(z;r) C O. Since z is an arbitrary point in O, this means O is open.

Suppose x,, 4 2. Let N be a neighborhood of z. Let r > 0 be such that

B(z;r) C N. Since lim d(x,,x) = 0, there is an M such that m > M im-
n—oo

plies d(m,z) < r. If d(xm,x) < r, then z,,, € B(x;r) by definition. Since

B(z;r) C N, this means z,, € N. Putting these implications together, we

have that m > M implies z,, € N.

Conversely, suppose that for each neighborhood N of z, there exists an M
so that m > M implies z,, € N. Clearly, for all » > 0, the ball B(x;r) is



a neighborhood of x. Thus, for all r > 0, there is an M such that m > M
implies &, € B(x;r), or equivalently, d(x,,,z) < r. Since d(z,,x) > 0, we
have lim d(zp,z) = 0. Thus z, 4.
n—oo

Let Y be a subset of X, and let O be the set of interior points of Y.
Let € O. Then for some r > 0, we have B(x;r) C Y. For all y €
B(z;r), we have B(y;r—d(z,y)) C B(x;r) by the triangle inequality. Then
B(y;r — d(z,y)) C Y, which means y is an interior point of Y, i.e. y € O.
Since y is an arbitrary point in B(xz;r), this means B(x;r) C O. Since x is
an arbitrary point in O, this means O is open.

Let L be the set of limit points of F, and let E = EUL. Let = be a
limit point of E. Suppose that x ¢ E, or equivalently = ¢ E and = ¢ L.
Then there is some r > 0 such that B(z;r) N E = @. On the other hand,
we know that B(z;7) N E # @, so we must have B(x;r) N L # @. Let
y € B(z;r) N L. Since B(z;r) NE = &, we know y ¢ E. Since y € L,
we know that for all ¢ > 0, B(y;t) N E # @. Since y € B(z;r), we have
d(xz,y) < r. Choosing t = r — d(z,y), we have B(y;t) C B(x;r) by the
triangle inequality, and B(y;t) N E # & from before. However, these two
facts imply B(z;r) N E # &, which contradicts the previously established
B(z;r) N E = @. Therefore, the assumption that z ¢ E must be false.
Therefore, E has all of its limit points, meaning it is closed.

Let O be open. Let y € O. By definition, there exists » > 0 such that
B(y;r) C O. By definition, this means O is a neighborhood of y. Since y
was chosen arbitrarily, this means O is a neighborhood of all of its points.

Conversely, suppose O is a neighborhood of all of its points. Let y € O.
Then O is a neighborhood of y, so B(y;r) C N for some r > 0. Since y was
chosen arbitrarily, this means O is open by definition.

O



Problem 2

A function f : (X,d) — (Y, p) between metric spaces is continuous iff for all
open sets O C Y, f~1(O) is open.

Proof. Let f be continuous. Let O C Y be open. Let z € f~1(0). We want to
show that there is 7 > 0 such that B(x;7) C f~1(0). Equivalently, we want to
show that there is r > 0 such that d(z,y) < r implies f(y) € O. Start with r = 1.
If B(z;1) C f~1(O), then we are done. Otherwise, let z; € B(x;1)\ f~1(0).

11 1

Then take r = '3 and so on. If for some n we have B | 2; — | C f~1(O), then

n
we are done. Otherwise, we have a sequence x1,xo,... with z,, € B (x; ),
n

1

ie. d(z,,z) < —. Since lim — = 0, we have z,, 4, ». Since f is continuous, we
n n—oo N

have f(x,) £ f(z). By parts (b) and (e) of Theorem 1.4, there exists an M such
that m > M implies f(z,,) € O. However, we assumed that f(z,) ¢ O for all

1
n, so we have a contradiction. It follows that for some n, B ( x; — | C f~1(0),
n

so f~1(O) is open.

Conversely, suppose that for all open sets O C Y, we have f~1(0) is open.

Let z, 4 2. Let N be a neighborhood of f(z). In particular, let » > 0 be
such that B(f(x);r) C N. Since B(f(x);r) is open, f~1(B(f(z);r)) is open.
Since f(x) € B(f(z);r), we have z € f~1(B(f(x);r)). By parts (b) and (e) of
Theorem 1.4, there exists an M such that m > M implies z,,, € f~1(B(f(z);7)),
which implies f(x,,) € B(f(x);r), which implies f(z,,) € N. Since N is an
arbitrary neighborhood of f(z), we have that f(z,) £ f(z) by part (b) of
Theorem 1.4. O



Problem 3

Let T: X — Y be a linear transformation between normed linear spaces (X, || -
[lx) and (Y,|| - ||y). The following are equivalent:

(a) T is continuous at one point.
(b) T is continuous at all points.

(¢) T is bounded.

Proof. Suppose T is continuous at some z € X. Let 2’ € X and let 2], € X
converge to z’. Let z, = x — 2’ + z],. Then ||z, — z||x = ||z}, — 2'||x can
be made arbitrarily small for sufficiently large n, i.e. x, converges to x. Thus
Tx, = Tex—Tz'+Tx), converges to Tx. In particular, || Te—Ta'+Ta, —Tz||x =
||Tx], — Ta'||x can be made arbitrarily small for sufficiently large n, i.e. Tz,
converges to Tz’. Thus T is continuous at z’, which was an arbitrary point in
X. Thus (a) implies (b).

Now suppose T is continuous at all points. Continuity at 0 implies that there is
a 0 > 0 such that ||z||x < ¢ implies ||Tz||y < 1. Let ¢’ be any positive real less
than §. Then, for any non-zero z, the vector ' = §'z/||x|| x satisfies ||z/||x < .
Therefore, ||T2'||y < 1, which can be rewritten as ||Tz||y < ||z||x/0’. This
trivially implies ||Tx||y < ||z||x/d’, which also holds for = 0, since both sides
become 0. We can take C' = 1/4’ to get that T is bounded. Thus (b) implies (c).

Finally, suppose T is bounded, with bound C. If C = 0, then ||Tz|| < 0, so
Tx =0 for all . Clearly the zero function is continuous. Then we can suppose
C is not zero and continue. Let z,, € X converge to 0. Since 70 = 0, we must
also show that T'x,, converges to 0. Let € > 0, and let n be large enough so that
[lzn]lx <e/C. Then ||Tz,|ly < C||lz,|| < e, so Tz, converges to 0, as desired.
Thus (c) implies (a). O



Problem 4

Suppose T is a bounded linear transformation from a normed linear space (V1, ||
[l1) to a complete normed linear space (Va,|| - ||2). Then T can be uniquely
extended to a bounded linear transformation (with the same bound), T, from
the completion of V; to V5.

Proof. Let Vi be the completion of V. We will also use || -||1 to denote the norm
on V;. The bookNproves the existence of T. Namely, for x € V; and z, € V;
converging to x, Tx is defined as the limit of T'z,,.

For z € Vi, considered as an element of V;, we can take the constant sequence
Tp, = x which obviously converges to x, so that Tz = limTz,, = limTz = Tx.
Thus T extends T'.

Now, suppose |[Tz||; < Cl|z||; for all z € Vi. Pick z € V; and a sequence

T, in Vi converging to z. The first claim the book makes without proof is

that ||Tx||z = lim ||T2,||2. First, we show a stronger result: d( lim y,,z) =
n—oo n—oo

lim d(yn,z) in any metric space, assuming lim y,, exists.
n—oo n—oo

Towards this goal, let y = lim y, and let € > 0. Pick IV so that n > N implies
n— oo

d(yn,y) < e. Then d(yn,z) < d(yn,y) + d(y,2z) < d(y,z) + € and d(y,z) <
Ay, yn) + d(yn, 2z) < € + d(yn, 2). Rewriting these gives d(yn,2) — d(y,2) < €
and d(y, z) —d(yn, z) < €, which implies |d(y, z) —d(yn, z)| < €. This shows that
nl;rl;o d(yn, z) = d(y, z) as desired.

To apply this result to our problem, recall that a norm induces a metric by
d(y,z) = ||y — z||, and that ||y|| = d(y,0). In our case, we have

||Tm||2 = || im Tx,||2 = d( lim Tz,,0)
n—roo n—oo

= lim d(Tz,,0) = lim ||Tzy]|2.
n— oo n—oo

Now I will deviate from the book. First, note that since x, converges to =,
the norms ||z,||[1 converge to ||z||. Indeed, by the triangle inequality, ||z —
x|l = ||lz]| — ||zx]||, and the left hand side can be made arbitrarily small.

Thus lim C|lz,||; exists and is equal to C||x||;. For notational simplicity,
n—oo
let ap, = ||Tznll2, a = lim an, b, = C||lzy]l1, b = lim b,. We will show
n— o0 n—00
a < b. By hypothesis on T', we know a,, < b, for all n. Suppose a > b. Let
e = 1(a—b). Let n be large enough so that |a —a,| < ¢ and |b—b,| < e. Then
b, <b+¢e=a—e¢ < a,, which contradicts a,, <b,. Thus we must have a < b.

In our case, we have shown lim [|Tz,|l2 < lim C||z,|[1. We also know that
- n—oo n— oo -

lim ||Tz,|l2 = |[Tz|]2 and lim Cllz,|l1 = C||z||1. Thus ||Tz||2 < C|lz||1,

n—oo n— oo

meaning 7" is bounded with the same bound as 7T'.



Let z,y € Vi and let a be a scalar. Let z,, and Yn be sequences in V7 converging
to z and y. By definition, ax 4+ y is lim (az, + y,). Thus,
n—oo

T(ax+y) = lim T(ax, + yn)
n—oo
=« lim (Tz,) + lim (Ty,) = aTz + Ty,
n— oo n— oo

so T’ is linear.

Finally, we will show that T is the unique extension of T to a bounded linear
transformation from V; to Va. Indeed, suppose J is another extension. Since
J is bounded, it is continuous, by Theorem 1.6. Let x € Vl and let =, €
converge to x. Then Jz, converges to Jx, but by hypothesis, Jx, = Tx,,
and by definition, Tz, converges to Tz. Thus Jxr = Tz, so T is the unique

extension.
O



Problem 5

If f, — f in L', then some subsequence f,. converges pointwise a.e. to f.

Proof. Convergent sequences are Cauchy, so we can pick a subsequence g; = f,
with ||gz — gi+1||1 < 27" Let

hn(2) = 30 19i(2) = gisa(a)]

m
and let hoo be the infinite sum. We have h,,  hoo and [ |hp,| < 3 |lgi —
i=1
git1ll1 £ 1, 50 hoo € L' by monotone convergence. In particular, he(z) < oo
a.e. Note that we can write

-1

gm (@) = g1(x) = > (9i(2) = giy1(2)).
1

3

i
In particular, since

m—1

> (9i(@) = gis1 ()] < him—1(2) < hoo(x)

i=1

is finite a.e., we have that g,, converges pointwise a.e. to a function, call it
g. By the above argument, we have |g,,(z)| < |g1(x)| + hoo(z), and the right
hand side is a fixed function in L', so g € L' and g,, — ¢ in L' by dominated
convergence. But g,, is a subsequence of f,, which we know converges to f
in L'. In particular, we must have f = g. Furthermore, we showed that g,
converges pointwise a.e. to g; in other words, we showed that a subsequence of
fn converges pointwise a.e. to f. O



Problem 6

(a) Prove that for any open set A in [0,1], x4 is an L' limit of continuous
functions.

(b) Let B be a Borel set in [0, 1]. Prove that xp is an L! limit of functions x 4
with A open.

(c) Prove Cla,b] is L' dense in L'[a, b].

Proof. (a) Write A as a countable union of pairwise disjoint open intervals
(a;,b;), ordered so that b; < a;y1, and possibly the sets {0} and {1} if
a1 = 0 or max b; = 1 respectively. Define continuous functions f,, as follows.
If x € A, then f,(x) = 1. Furthermore, set f,(a;) = fn(b;) =1 for all 4. If
b; # a;11, then set

B (x —bi — 7“”5{’”) by <@ < by 4 Lib

ai+1—b,; 2n ?
_ ait1—bi ait1—b;
fn(i)— 0 bi+T§$§ai+l_%v
2n ) ait1—b; ) ait1—b; )
@ir1—b; (l‘ — Qi1 + 2n ) Ai+1 — ~— 3, <z <ajy-

Intuitively, we are defining f,(z) to drop down to zero and come back up,
but faster and faster as n gets bigger. If 0 is not in A, or if sup b; # 1, then
we also need to do a similar thing between 0 and a;, and between supb;
and 1. T will not write that out explicitly. If supb; = 1, we take f,(1) = 1.

Now, we claim that the f, converge in L' to x4. The only contributions to
[|fr.— xall1 will be the triangles when f,,(x) jumps down between intervals.
Qijy1 — b;

Since A C
2n

Explicitly, the contribution between b; and a;y; is

&)
[0,1], we have > (a;+1—b;) < 1, so the contributions to || f, —xa||1 between

i=1
1
the intervals is bounded by —, which goes to 0. There are also contributions

in the cases a; # 0 and sup b; # 1 which will be triangles with fixed height
and a base length that goes to 0. In all, we have || f, —xal|l1 — 0, as desired.

(b) Note that ||xp]|1 is the Lebesgue measure of B, which is the infimum of the
Lebesgue measures of open sets A containing B. In particular, there is a
sequence of A,, of open sets that contain B such that u(B) = lim u(A4,).

n—oo

Note that u does not take infinite values on [0, 1], since for all measurable M,
w(M) < u([0,1]) = 1. Now, u(B) = u(B\ An)+u(A,,), and since everything
is finite, we can write u(B\ 4,) = u(B)—u(Ay). Since u(B) = li_>m w(Ar),

we have lim pu(B\ A,) = 0. We can write xp\4, = XB — XA,,, SO we have
lim ||xz — xa,|l1 = u(B\ Ay) converging to 0. In other words, xp is the
n— oo

L' limit of x4, .



(¢) From parts (a) and (b), and since limits are linear, it suffices to show that

n
any f € L'[a,b] is an L' limit of functions of the form > ¢,,xp, with
m=1
B,, pairwise disjoint Borel sets. In fact, since f € L' is a difference of non-
negative L' functions, namely max (f,0) and max (—f,0), we can assume

f>0and ¢, >0.

First, a lemma. Suppose an L' function ¢ on [0, 1] takes finitely many

n
values, say c1,...,¢,. Then we can write ¢ = > ¢pnxB,,, where each
m=1

By, = ¢7Y({cm}) is Borel and disjoint from the other B;. There is nothing
involved in the proof of this fact; it is true by definitions.

Now for n > 1, define

fula) = min (n, 2T,

We have f,, € L' by basic properties of L'. Furthermore, f, takes finitely
many values: 0, 2%7 ...,n. Thus, we can write f, as a finite linear combi-
nation of indicators of Borel sets by our lemma.

We claim that f, — f in L'. We will use monotone convergence. First we
show f,(x) < fny1(x). There are three cases to consider:

In the first case, fn4+1(z) = n+ 1, in which case the inequality is obvious
since f,,(z) < n by definition.

In the second case, f,,(x) =27"[2"f(z)] and f,i1(x) = 27" L[ 2" f(2)].
In this case, the inequality is a special case of the inequality 2|a] < |2a],
which is also proved by cases: If a € [k, k+ %) for k € Z, then 2|a] = 2k and
|2a) = 2k; Ifa € [k+1,k+1) for k € Z, then 2|a] = 2k and |2a| = 2k + 1.

In the last case, f,(z) = n and f,1(z) = 2777 1[2" T f(x)|. Note that
fn(x) = n implies n < 27™|2" f(x)], and by the previous case, we know
27|27 f(z)] < 277127t ()], so together we get the desired inequality.

We have shown that the f,, are monotone increasing, non-negative L! func-
tions. It remains to show that they converge pointwise a.e. to f. Since
f € L', f is finite a.e. Let  be any point with f(z) < co. Then for all
n > f(z), we have 27| 2" f(x)] < 27" |[n2"| =n, so fn(x) = 27" 2" f(z)].
Now, since a — |a| < 1 for all a, we have f(z) — fn(z) < 27", so fn(x)
converges pointwise a.e. to f(x). Thus, by monotone convergence theorem,



the f, converge to f in L'.

To recap, we have shown that any f € L! is an L' limit of finite linear
combinations of indicators of Borel sets. Since the indicators are L' limits
of continuous functions by parts (a) and (b), it follows that f is an L' limit
of continuous functions.

O
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Problem 7

Use an £/3 argument to prove the following: Let B be a complete normed
linear space and suppose T}, is a sequence of linear maps T}, : B — B with two
properties:

(i) The T,, are bounded uniformly in n; ||T,|| < C for all n.

(ii) For a dense set D C B, T,x converges if x € D.

Show that T,z converges for each z and that the limiting function Tz is a
bounded linear map.

Proof. Let C be the bound given in condition (i). If C = 0, then each T,, must
be the zero map, in which case T,,z = 0 obviously converges for all . Thus we
will assume C' > 0. Since B is complete, we will show that T,z is a Cauchy
sequence, and this will imply that T,,x converges.

Let € > 0 and let © € B. Let (z) be a sequence of elements in D which converge
to . Fix k large so that ||z —a|| < /(3C). Since T,z converges, it is Cauchy;
fix N so that m,n > N implies ||T,x; — Tmak|| < /3. Then for m,n > N, we
have

[ Thx — Tnl|| < (| Twz — Toxkl|| + || Tozk — Tnxkl| + [Tk — Tinzl|
[T — 2 + [ Ton — Tzl + [Tk — )]
< Cllw — all + T — Tmanl] + Clla — 2
< Ce/(3C)+¢e/3+Ce/(3C) =e.

Therefore, we have a well-defined function T : B — B. We must now show it is
bounded and linear.

Let ¢ > 0, and let n be large enough so that ||[Tx — T,,z|| < €. Then ||Tz|| <
[|Tx — Thzx|| + ||Thz|| < € + C||z||. Since ||Tz|| — C||z|| < € for all € > 0, we
must have ||Tz|| — C||z|| <0, so T is bounded.

Now let z,y € B and « a scalar. We want to show T(ax +y) = aTx+Ty. This
is trivial if @ = 0, so assume « # 0. Since T;, converges to T' pointwise, we can
choose n large enough so that we have the following three inequalities:

1T (e +y) — Tn(az +y)|| <e/3,
[Tz — Ta|| < e/(B3lal),
| Twy — Tyl <e/3.

11



Then we have

|T(ax +y) — (aTx + Ty)||
< T(ax +y) — Tolax +y)|| + || Tn(ax +y) — (aTx + Ty)||
=|[|T(ax +y) — Tnlax + y)|| + [[aTpz + Ty — (oTx + Ty)||

<|T(ax +y) — Tnlax +y)|| + [|oThz — oTx|| + || Thy — Tyl
) = Tlax + )l + e[| Taz — Tx|| + || Tny — Tyl|

=|[|T(ax +y
<e/3+ |ale/(Bla]) +e/3 =e.

The only way for ||A|| < ¢ for all ¢ > 0 is if ||A|| = 0, which means A = 0
i O

Hence we have T(ax +y) — (aTx 4+ Ty) = 0, so T is linear.

12



Problem 8

Use an ¢/3 argument to prove the following: Let {f,} be an equicontinuous
family of functions from metric space (X,d) to metric space (Y,p), with ¥
complete. Suppose that for a dense set D C X, we know f,,(x) converges for all
x € D. Then show that f,,(x) converges for all z.

Proof. We will show that for all z, f,(z) is a Cauchy sequence. Since Y is
complete, this will imply f,, (z) converges.

Let ¢ > 0 and let * € X. By equicontinuity, let § > 0 be such that for all
n, d(z,z’) < § implies p(fn(z), fn(2’)) < /3. Next, let (x) be a sequence of
elements in D that converges to x. Fix k large so that d(z,zy) < §; this implies
p(fr(x), fn(zr)) < /3 for all n. Since f,(x) converges, it is Cauchy; let N be
such that n,m > N implies p(fn(x), fm(zx)) < /3. Then for n,m > N, we
have

p(fn(2), fm () < p(fu(@), fu(zr) + p(fu(zk), fm (k) + p(fm (@), (7))
<e/3+e/3+¢e/3=c.

13



Problem 9

(a)

(b)

Using the Heine-Borel property, prove that a continuous function on [0, 1]
is uniformly continuous.

Prove that an equicontinuous family of functions on [0,1] is uniformly
equicontinuous.

Proof. (a) Since [0,1] is closed and bounded, it satisfies the property that any

open cover has a finite subcover. Let f € C[0,1] and let € > 0. For each
x € [0,1], there is a §, > 0 so that if 2’ € [0,1] and |z — 2| < &, then
|f(z) — f(2')] < €/2. The open balls of radius J,/2 at each z give an
open cover of [0,1]. There is a finite subcover, say given by balls of radius
01/2,...,0,/2 at 21, ...,2,. Let § be the minumum of the 61/2,...,0,/2.

Now let z,y € [0, 1] with |x—y| < d. There is some ¢ such that |[z—z;| < d;/2.
Then

ly — | <oz —y|+ o —xi| <I+§;/2 <.
By definition of the d;, it follows that

[f(@) = f)l < [f(@) = f@a)| + | (2:) = f(y)l
<eg/24+¢e/2=c¢.

Let the family be F. Let € > 0. We will construct a number § depending
only on ¢ as follows. Since F is equicontinuous, for all = € [0, 1], there
is 0, > 0 such that for all f € F, we have that |z — 2'| < J, implies
|f(z)— f(a’)] < e/2. The open balls of radius d,/2 at x give an open cover,
so we can choose a finite subcover by the Heine-Borel property of [0, 1].
Let the finite subcover consist of balls of radius 61/2,...,0,/2 at points
Z1y...,Zn. Let § be the minimum of the §; /2.

Now let |z —y| < 4. There is some 4 such that |z — z;| < §;/2. Then

ly — il <y — 2|+ [z — ;]

For all f € I we now have

[f(@) = fF)l < [f(2) = f@)| + | (zi) = f(y)l
<egf24¢e/2=c¢.

This proves F is uniformly equicontinuous.
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