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Problem 1

Let (X, d) be a metric space. Prove the following:

(a) A set O is open iff X \O is closed.

(b) xm
d−→ x iff for each neighborhood N of x, there exists an M so that m ≥ M

implies xm ∈ N .

(c) The set of interior points of a set is open.

(d) The union of a set E with its limit points is a closed set.

(e) A set is open if and only if it is a neighborhood of each of its points.

Proof. (a) Let O be open. Let x be a limit point of X \ O. Suppose x ∈ O.
Then there is r > 0 such that B(x; r) ⊂ O. Then B(x; r) ∩ (X \ O) = ∅,
which contradicts the hypothesis that x is a limit point of X \ O. Thus
x /∈ O, i.e. x ∈ X \ O. Since x was an arbitrary limit point of X \ O, it
follows that X \O contains all of its limit points, so it is closed.

Conversely, let X \ O be closed. Let x ∈ O. Since x /∈ X \ O and X \ O
contains its limit points, x is not a limit point of X \O. Therefore, there is
some r > 0 such that B(x; r) ∩ ((X \ O) \ {x}) = ∅. Since x /∈ X \ O, we
have (X \O)\{x} = X \O. Thus B(x; r)∩ (X \O) = ∅. This is equivalent
to B(x; r) ⊂ O. Since x is an arbitrary point in O, this means O is open.

(b) Suppose xm
d−→ x. Let N be a neighborhood of x. Let r > 0 be such that

B(x; r) ⊂ N . Since lim
n→∞

d(xn, x) = 0, there is an M such that m ≥ M im-

plies d(xm, x) < r. If d(xm, x) < r, then xm ∈ B(x; r) by definition. Since
B(x; r) ⊂ N , this means xm ∈ N . Putting these implications together, we
have that m ≥ M implies xm ∈ N .

Conversely, suppose that for each neighborhood N of x, there exists an M
so that m ≥ M implies xm ∈ N . Clearly, for all r > 0, the ball B(x; r) is
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a neighborhood of x. Thus, for all r > 0, there is an M such that m ≥ M
implies xm ∈ B(x; r), or equivalently, d(xm, x) < r. Since d(xn, x) ≥ 0, we

have lim
n→∞

d(xn, x) = 0. Thus xn
d−→ x.

(c) Let Y be a subset of X, and let O be the set of interior points of Y .
Let x ∈ O. Then for some r > 0, we have B(x; r) ⊂ Y . For all y ∈
B(x; r), we have B(y; r−d(x, y)) ⊂ B(x; r) by the triangle inequality. Then
B(y; r − d(x, y)) ⊂ Y , which means y is an interior point of Y , i.e. y ∈ O.
Since y is an arbitrary point in B(x; r), this means B(x; r) ⊂ O. Since x is
an arbitrary point in O, this means O is open.

(d) Let L be the set of limit points of E, and let E = E ∪ L. Let x be a
limit point of E. Suppose that x /∈ E, or equivalently x /∈ E and x /∈ L.
Then there is some r > 0 such that B(x; r) ∩ E = ∅. On the other hand,
we know that B(x; r) ∩ E ̸= ∅, so we must have B(x; r) ∩ L ̸= ∅. Let
y ∈ B(x; r) ∩ L. Since B(x; r) ∩ E = ∅, we know y /∈ E. Since y ∈ L,
we know that for all t > 0, B(y; t) ∩ E ̸= ∅. Since y ∈ B(x; r), we have
d(x, y) < r. Choosing t = r − d(x, y), we have B(y; t) ⊂ B(x; r) by the
triangle inequality, and B(y; t) ∩ E ̸= ∅ from before. However, these two
facts imply B(x; r) ∩ E ̸= ∅, which contradicts the previously established
B(x; r) ∩ E = ∅. Therefore, the assumption that x /∈ E must be false.
Therefore, E has all of its limit points, meaning it is closed.

(e) Let O be open. Let y ∈ O. By definition, there exists r > 0 such that
B(y; r) ⊂ O. By definition, this means O is a neighborhood of y. Since y
was chosen arbitrarily, this means O is a neighborhood of all of its points.

Conversely, suppose O is a neighborhood of all of its points. Let y ∈ O.
Then O is a neighborhood of y, so B(y; r) ⊂ N for some r > 0. Since y was
chosen arbitrarily, this means O is open by definition.
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Problem 2

A function f : (X, d) → (Y, ρ) between metric spaces is continuous iff for all
open sets O ⊂ Y , f−1(O) is open.

Proof. Let f be continuous. Let O ⊂ Y be open. Let x ∈ f−1(O). We want to
show that there is r > 0 such that B(x; r) ⊂ f−1(O). Equivalently, we want to
show that there is r > 0 such that d(x, y) < r implies f(y) ∈ O. Start with r = 1.
If B(x; 1) ⊂ f−1(O), then we are done. Otherwise, let x1 ∈ B(x; 1) \ f−1(O).

Then take r =
1

2
,
1

3
, and so on. If for some n we have B

(
x;

1

n

)
⊂ f−1(O), then

we are done. Otherwise, we have a sequence x1, x2, . . . with xn ∈ B

(
x;

1

n

)
,

i.e. d(xn, x) <
1

n
. Since lim

n→∞

1

n
= 0, we have xn

d−→ x. Since f is continuous, we

have f(xn)
ρ−→ f(x). By parts (b) and (e) of Theorem I.4, there exists an M such

that m ≥ M implies f(xm) ∈ O. However, we assumed that f(xn) /∈ O for all

n, so we have a contradiction. It follows that for some n, B

(
x;

1

n

)
⊂ f−1(O),

so f−1(O) is open.

Conversely, suppose that for all open sets O ⊂ Y , we have f−1(O) is open.

Let xn
d−→ x. Let N be a neighborhood of f(x). In particular, let r > 0 be

such that B(f(x); r) ⊂ N . Since B(f(x); r) is open, f−1(B(f(x); r)) is open.
Since f(x) ∈ B(f(x); r), we have x ∈ f−1(B(f(x); r)). By parts (b) and (e) of
Theorem I.4, there exists an M such that m ≥ M implies xm ∈ f−1(B(f(x); r)),
which implies f(xm) ∈ B(f(x); r), which implies f(xm) ∈ N . Since N is an

arbitrary neighborhood of f(x), we have that f(xn)
ρ−→ f(x) by part (b) of

Theorem I.4.
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Problem 3

Let T : X → Y be a linear transformation between normed linear spaces (X, || ·
||X) and (Y, || · ||Y ). The following are equivalent:

(a) T is continuous at one point.

(b) T is continuous at all points.

(c) T is bounded.

Proof. Suppose T is continuous at some x ∈ X. Let x′ ∈ X and let x′
n ∈ X

converge to x′. Let xn = x − x′ + x′
n. Then ||xn − x||X = ||x′

n − x′||X can
be made arbitrarily small for sufficiently large n, i.e. xn converges to x. Thus
Txn = Tx−Tx′+Tx′

n converges to Tx. In particular, ||Tx−Tx′+Tx′
n−Tx||X =

||Tx′
n − Tx′||X can be made arbitrarily small for sufficiently large n, i.e. Tx′

n

converges to Tx′. Thus T is continuous at x′, which was an arbitrary point in
X. Thus (a) implies (b).

Now suppose T is continuous at all points. Continuity at 0 implies that there is
a δ > 0 such that ||x||X < δ implies ||Tx||Y < 1. Let δ′ be any positive real less
than δ. Then, for any non-zero x, the vector x′ = δ′x/||x||X satisfies ||x′||X < δ.
Therefore, ||Tx′||Y < 1, which can be rewritten as ||Tx||Y < ||x||X/δ′. This
trivially implies ||Tx||Y ≤ ||x||X/δ′, which also holds for x = 0, since both sides
become 0. We can take C = 1/δ′ to get that T is bounded. Thus (b) implies (c).

Finally, suppose T is bounded, with bound C. If C = 0, then ||Tx|| ≤ 0, so
Tx = 0 for all x. Clearly the zero function is continuous. Then we can suppose
C is not zero and continue. Let xn ∈ X converge to 0. Since T0 = 0, we must
also show that Txn converges to 0. Let ε > 0, and let n be large enough so that
||xn||X < ε/C. Then ||Txn||Y ≤ C||xn|| < ε, so Txn converges to 0, as desired.
Thus (c) implies (a).
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Problem 4

Suppose T is a bounded linear transformation from a normed linear space (V1, ||·
||1) to a complete normed linear space (V2, || · ||2). Then T can be uniquely
extended to a bounded linear transformation (with the same bound), T̃ , from
the completion of V1 to V2.

Proof. Let Ṽ1 be the completion of V . We will also use || · ||1 to denote the norm
on Ṽ1. The book proves the existence of T̃ . Namely, for x ∈ Ṽ1 and xn ∈ V1

converging to x, T̃ x is defined as the limit of Txn.

For x ∈ V1, considered as an element of Ṽ1, we can take the constant sequence
xn = x which obviously converges to x, so that T̃ x = limTxn = limTx = Tx.
Thus T̃ extends T .

Now, suppose ||Tx||2 ≤ C||x||1 for all x ∈ V1. Pick x ∈ Ṽ1 and a sequence
xn in V1 converging to x. The first claim the book makes without proof is
that ||T̃ x||2 = lim

n→∞
||Txn||2. First, we show a stronger result: d( lim

n→∞
yn, z) =

lim
n→∞

d(yn, z) in any metric space, assuming lim
n→∞

yn exists.

Towards this goal, let y = lim
n→∞

yn and let ε > 0. Pick N so that n ≥ N implies

d(yn, y) < ε. Then d(yn, z) ≤ d(yn, y) + d(y, z) < d(y, z) + ε and d(y, z) ≤
d(y, yn) + d(yn, z) < ε + d(yn, z). Rewriting these gives d(yn, z) − d(y, z) < ε
and d(y, z)−d(yn, z) < ε, which implies |d(y, z)−d(yn, z)| < ε. This shows that
lim

n→∞
d(yn, z) = d(y, z) as desired.

To apply this result to our problem, recall that a norm induces a metric by
d(y, z) = ||y − z||, and that ||y|| = d(y, 0). In our case, we have

||T̃ x||2 = || lim
n→∞

Txn||2 = d( lim
n→∞

Txn, 0)

= lim
n→∞

d(Txn, 0) = lim
n→∞

||Txn||2.

Now I will deviate from the book. First, note that since xn converges to x,
the norms ||xn||1 converge to ||x||. Indeed, by the triangle inequality, ||x −
xn|| ≥ |||x|| − ||xn|||, and the left hand side can be made arbitrarily small.
Thus lim

n→∞
C||xn||1 exists and is equal to C||x||1. For notational simplicity,

let an = ||Txn||2, a = lim
n→∞

an, bn = C||xn||1, b = lim
n→∞

bn. We will show

a ≤ b. By hypothesis on T , we know an ≤ bn for all n. Suppose a > b. Let
ε = 1

2 (a− b). Let n be large enough so that |a− an| < ε and |b− bn| < ε. Then
bn < b+ ε = a− ε < an, which contradicts an ≤ bn. Thus we must have a ≤ b.
In our case, we have shown lim

n→∞
||Txn||2 ≤ lim

n→∞
C||xn||1. We also know that

lim
n→∞

||Txn||2 = ||T̃ x||2 and lim
n→∞

C||xn||1 = C||x||1. Thus ||T̃ x||2 ≤ C||x||1,

meaning T̃ is bounded with the same bound as T .
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Let x, y ∈ Ṽ1 and let α be a scalar. Let xn and yn be sequences in V1 converging
to x and y. By definition, αx+ y is lim

n→∞
(αxn + yn). Thus,

T̃ (αx+ y) = lim
n→∞

T (αxn + yn)

= α lim
n→∞

(Txn) + lim
n→∞

(Tyn) = αTx+ Ty,

so T is linear.

Finally, we will show that T̃ is the unique extension of T to a bounded linear
transformation from Ṽ1 to V2. Indeed, suppose J is another extension. Since
J is bounded, it is continuous, by Theorem I.6. Let x ∈ Ṽ1 and let xn ∈ V1

converge to x. Then Jxn converges to Jx, but by hypothesis, Jxn = Txn,
and by definition, Txn converges to T̃ x. Thus Jx = T̃ x, so T̃ is the unique
extension.
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Problem 5

If fn → f in L1, then some subsequence fni converges pointwise a.e. to f .

Proof. Convergent sequences are Cauchy, so we can pick a subsequence gi = fni

with ||gi − gi+1||1 ≤ 2−i. Let

hm(x) =

m∑
i=1

|gi(x)− gi+1(x)|

and let h∞ be the infinite sum. We have hm ↗ h∞ and
∫
|hm| ≤

m∑
i=1

||gi −

gi+1||1 ≤ 1, so h∞ ∈ L1 by monotone convergence. In particular, h∞(x) < ∞
a.e. Note that we can write

gm(x) = g1(x)−
m−1∑
i=1

(gi(x)− gi+1(x)).

In particular, since∣∣∣∣∣
m−1∑
i=1

(gi(x)− gi+1(x))

∣∣∣∣∣ ≤ hm−1(x) ≤ h∞(x)

is finite a.e., we have that gm converges pointwise a.e. to a function, call it
g. By the above argument, we have |gm(x)| ≤ |g1(x)| + h∞(x), and the right
hand side is a fixed function in L1, so g ∈ L1 and gm → g in L1 by dominated
convergence. But gm is a subsequence of fn, which we know converges to f
in L1. In particular, we must have f = g. Furthermore, we showed that gm
converges pointwise a.e. to g; in other words, we showed that a subsequence of
fn converges pointwise a.e. to f .
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Problem 6

(a) Prove that for any open set A in [0, 1], χA is an L1 limit of continuous
functions.

(b) Let B be a Borel set in [0, 1]. Prove that χB is an L1 limit of functions χA

with A open.

(c) Prove C[a, b] is L1 dense in L1[a, b].

Proof. (a) Write A as a countable union of pairwise disjoint open intervals
(ai, bi), ordered so that bi ≤ ai+1, and possibly the sets {0} and {1} if
a1 = 0 or max bi = 1 respectively. Define continuous functions fn as follows.
If x ∈ A, then fn(x) = 1. Furthermore, set fn(ai) = fn(bi) = 1 for all i. If
bi ̸= ai+1, then set

fn(x) =


−2n

ai+1−bi

(
x− bi − ai+1−bi

2n

)
bi ≤ x ≤ bi +

ai+1−bi
2n ,

0 bi +
ai+1−bi

2n ≤ x ≤ ai+1 − ai+1−bi
2n ,

2n
ai+1−bi

(
x− ai+1 +

ai+1−bi
2n

)
ai+1 − ai+1−bi

2n ≤ x ≤ ai+1.

Intuitively, we are defining fn(x) to drop down to zero and come back up,
but faster and faster as n gets bigger. If 0 is not in A, or if sup bi ̸= 1, then
we also need to do a similar thing between 0 and a1, and between sup bi
and 1. I will not write that out explicitly. If sup bi = 1, we take fn(1) = 1.

Now, we claim that the fn converge in L1 to χA. The only contributions to
||fn−χA||1 will be the triangles when fn(x) jumps down between intervals.

Explicitly, the contribution between bi and ai+1 is
ai+1 − bi

2n
. Since A ⊂

[0, 1], we have
∞∑
i=1

(ai+1−bi) ≤ 1, so the contributions to ||fn−χA||1 between

the intervals is bounded by
1

2n
, which goes to 0. There are also contributions

in the cases a1 ̸= 0 and sup bi ̸= 1 which will be triangles with fixed height
and a base length that goes to 0. In all, we have ||fn−χA||1 → 0, as desired.

(b) Note that ||χB ||1 is the Lebesgue measure of B, which is the infimum of the
Lebesgue measures of open sets A containing B. In particular, there is a
sequence of An of open sets that contain B such that µ(B) = lim

n→∞
µ(An).

Note that µ does not take infinite values on [0, 1], since for all measurableM ,
µ(M) ≤ µ([0, 1]) = 1. Now, µ(B) = µ(B\An)+µ(An), and since everything
is finite, we can write µ(B\An) = µ(B)−µ(An). Since µ(B) = lim

n→∞
µ(An),

we have lim
n→∞

µ(B \An) = 0. We can write χB\An
= χB − χAn

, so we have

lim
n→∞

||χB − χAn
||1 = µ(B \An) converging to 0. In other words, χB is the

L1 limit of χAn .
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(c) From parts (a) and (b), and since limits are linear, it suffices to show that

any f ∈ L1[a, b] is an L1 limit of functions of the form
n∑

m=1
cmχBm

with

Bm pairwise disjoint Borel sets. In fact, since f ∈ L1 is a difference of non-
negative L1 functions, namely max (f, 0) and max (−f, 0), we can assume
f ≥ 0 and cm ≥ 0.

First, a lemma. Suppose an L1 function ϕ on [0, 1] takes finitely many

values, say c1, . . . , cn. Then we can write ϕ =
n∑

m=1
cmχBm

, where each

Bm = ϕ−1({cm}) is Borel and disjoint from the other Bi. There is nothing
involved in the proof of this fact; it is true by definitions.

Now for n ≥ 1, define

fn(x) = min

(
n,

⌊2nf(x)⌋
2n

)
.

We have fn ∈ L1 by basic properties of L1. Furthermore, fn takes finitely
many values: 0, 1

2n , . . . , n. Thus, we can write fn as a finite linear combi-
nation of indicators of Borel sets by our lemma.

We claim that fn → f in L1. We will use monotone convergence. First we
show fn(x) ≤ fn+1(x). There are three cases to consider:

In the first case, fn+1(x) = n + 1, in which case the inequality is obvious
since fn(x) ≤ n by definition.

In the second case, fn(x) = 2−n⌊2nf(x)⌋ and fn+1(x) = 2−n−1⌊2n+1f(x)⌋.
In this case, the inequality is a special case of the inequality 2⌊a⌋ ≤ ⌊2a⌋,
which is also proved by cases: If a ∈ [k, k+ 1

2 ) for k ∈ Z, then 2⌊a⌋ = 2k and
⌊2a⌋ = 2k; If a ∈ [k+ 1

2 , k+1) for k ∈ Z, then 2⌊a⌋ = 2k and ⌊2a⌋ = 2k+1.

In the last case, fn(x) = n and fn+1(x) = 2−n−1⌊2n+1f(x)⌋. Note that
fn(x) = n implies n ≤ 2−n⌊2nf(x)⌋, and by the previous case, we know
2−n⌊2nf(x)⌋ ≤ 2−n−1⌊2n+1f(x)⌋, so together we get the desired inequality.

We have shown that the fn are monotone increasing, non-negative L1 func-
tions. It remains to show that they converge pointwise a.e. to f . Since
f ∈ L1, f is finite a.e. Let x be any point with f(x) < ∞. Then for all
n ≥ f(x), we have 2−n⌊2nf(x)⌋ ≤ 2−n⌊n2n⌋ = n, so fn(x) = 2−n⌊2nf(x)⌋.
Now, since a − ⌊a⌋ < 1 for all a, we have f(x) − fn(x) < 2−n, so fn(x)
converges pointwise a.e. to f(x). Thus, by monotone convergence theorem,
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the fn converge to f in L1.

To recap, we have shown that any f ∈ L1 is an L1 limit of finite linear
combinations of indicators of Borel sets. Since the indicators are L1 limits
of continuous functions by parts (a) and (b), it follows that f is an L1 limit
of continuous functions.
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Problem 7

Use an ε/3 argument to prove the following: Let B be a complete normed
linear space and suppose Tn is a sequence of linear maps Tn : B → B with two
properties:

(i) The Tn are bounded uniformly in n; ||Tn|| ≤ C for all n.

(ii) For a dense set D ⊂ B, Tnx converges if x ∈ D.

Show that Tnx converges for each x and that the limiting function Tx is a
bounded linear map.

Proof. Let C be the bound given in condition (i). If C = 0, then each Tn must
be the zero map, in which case Tnx = 0 obviously converges for all x. Thus we
will assume C > 0. Since B is complete, we will show that Tnx is a Cauchy
sequence, and this will imply that Tnx converges.

Let ε > 0 and let x ∈ B. Let (xk) be a sequence of elements in D which converge
to x. Fix k large so that ||x−xk|| < ε/(3C). Since Tnx converges, it is Cauchy;
fix N so that m,n ≥ N implies ||Tnxk − Tmxk|| < ε/3. Then for m,n ≥ N , we
have

||Tnx− Tmx|| ≤ ||Tnx− Tnxk||+ ||Tnxk − Tmxk||+ ||Tmxk − Tmx||
= ||Tn(x− xk)||+ ||Tnxk − Tmxk||+ ||Tm(xk − x)||

≤ C||x− xk||+ ||Tnxk − Tmxk||+ C||xk − x||
< Cε/(3C) + ε/3 + Cε/(3C) = ε.

Therefore, we have a well-defined function T : B → B. We must now show it is
bounded and linear.

Let ε > 0, and let n be large enough so that ||Tx − Tnx|| < ε. Then ||Tx|| ≤
||Tx − Tnx|| + ||Tnx|| < ε + C||x||. Since ||Tx|| − C||x|| < ε for all ε > 0, we
must have ||Tx|| − C||x|| ≤ 0, so T is bounded.

Now let x, y ∈ B and α a scalar. We want to show T (αx+y) = αTx+Ty. This
is trivial if α = 0, so assume α ̸= 0. Since Tn converges to T pointwise, we can
choose n large enough so that we have the following three inequalities:

||T (αx+ y)− Tn(αx+ y)|| < ε/3,

||Tnx− Tx|| < ε/(3|α|),
||Tny − Ty|| < ε/3.
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Then we have

||T (αx+ y)− (αTx+ Ty)||
≤ ||T (αx+ y)− Tn(αx+ y)||+ ||Tn(αx+ y)− (αTx+ Ty)||
= ||T (αx+ y)− Tn(αx+ y)||+ ||αTnx+ Tny − (αTx+ Ty)||
≤ ||T (αx+ y)− Tn(αx+ y)||+ ||αTnx− αTx||+ ||Tny − Ty||
= ||T (αx+ y)− Tn(αx+ y)||+ |α|||Tnx− Tx||+ ||Tny − Ty||

< ε/3 + |α|ε/(3|α|) + ε/3 = ε.

The only way for ||A|| < ε for all ε > 0 is if ||A|| = 0, which means A = 0.
Hence we have T (αx+ y)− (αTx+ Ty) = 0, so T is linear.
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Problem 8

Use an ε/3 argument to prove the following: Let {fn} be an equicontinuous
family of functions from metric space (X, d) to metric space (Y, ρ), with Y
complete. Suppose that for a dense set D ⊂ X, we know fn(x) converges for all
x ∈ D. Then show that fn(x) converges for all x.

Proof. We will show that for all x, fn(x) is a Cauchy sequence. Since Y is
complete, this will imply fn(x) converges.

Let ε > 0 and let x ∈ X. By equicontinuity, let δ > 0 be such that for all
n, d(x, x′) < δ implies ρ(fn(x), fn(x

′)) < ε/3. Next, let (xk) be a sequence of
elements in D that converges to x. Fix k large so that d(x, xk) < δ; this implies
ρ(fn(x), fn(xk)) < ε/3 for all n. Since fn(xk) converges, it is Cauchy; let N be
such that n,m ≥ N implies ρ(fn(xk), fm(xk)) < ε/3. Then for n,m ≥ N , we
have

ρ(fn(x), fm(x)) ≤ ρ(fn(x), fn(xk)) + ρ(fn(xk), fm(xk)) + ρ(fm(xk), fm(x))

< ε/3 + ε/3 + ε/3 = ε.
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Problem 9

(a) Using the Heine-Borel property, prove that a continuous function on [0, 1]
is uniformly continuous.

(b) Prove that an equicontinuous family of functions on [0, 1] is uniformly
equicontinuous.

Proof. (a) Since [0, 1] is closed and bounded, it satisfies the property that any
open cover has a finite subcover. Let f ∈ C[0, 1] and let ε > 0. For each
x ∈ [0, 1], there is a δx > 0 so that if x′ ∈ [0, 1] and |x − x′| < δx, then
|f(x) − f(x′)| < ε/2. The open balls of radius δx/2 at each x give an
open cover of [0, 1]. There is a finite subcover, say given by balls of radius
δ1/2, . . . , δn/2 at x1, . . . , xn. Let δ be the minumum of the δ1/2, . . . , δn/2.

Now let x, y ∈ [0, 1] with |x−y| < δ. There is some i such that |x−xi| < δi/2.
Then

|y − xi| ≤ |x− y|+ |x− xi| < δ + δi/2 ≤ δi.

By definition of the δi, it follows that

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)|
< ε/2 + ε/2 = ε.

(b) Let the family be F . Let ε > 0. We will construct a number δ depending
only on ε as follows. Since F is equicontinuous, for all x ∈ [0, 1], there
is δx > 0 such that for all f ∈ F , we have that |x − x′| < δx implies
|f(x)− f(x′)| < ε/2. The open balls of radius δx/2 at x give an open cover,
so we can choose a finite subcover by the Heine-Borel property of [0, 1].
Let the finite subcover consist of balls of radius δ1/2, . . . , δn/2 at points
x1, . . . , xn. Let δ be the minimum of the δi/2.

Now let |x− y| < δ. There is some i such that |x− xi| < δi/2. Then

|y − xi| ≤ |y − x|+ |x− xi|
< δ + δi/2 ≤ δi.

For all f ∈ F we now have

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)|
< ε/2 + ε/2 = ε.

This proves F is uniformly equicontinuous.
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