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1 Problem 1

Show that limn→∞
∫
[1,∞)

sin(x/n) n3

1+n2x3 dλ exists and then find the limit.

Proof. Recall the limit limx→0 sin(x)/x = 1. Then limn→∞ sin(x/n)n = x
for fixed x (special care should be taken for x = 0, but in this case we get

sin(x/n)n = 0 for all n). Thus, sin(x/n) n3

1+n2x3 → 1
x2 pointwise, which is inte-

grable over [1,∞). Now note that | sin(x)| ≤ |x| for all x (this can be proven

with a simple geometry argument). Thus | sin(x/n) n3

1+n2x3 | ≤ n2x
1+n2x3 ≤ 1

x2 for
x > 0. Thus the sequence is dominated by an integrable function, and we can

apply LDCT to get limn→∞
∫
[1,∞)

sin(x/n) n3

1+n2x3 dλ =
∫
[1,∞)

1
x2 dλ = 1.
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2 Problem 2

Let f ∈ L1(R) such that g(x) = xf(x) is integrable. Define F (t) =
∫
R cos(xt)f(x)dλ.

Show that F is continuously differentiable.

Proof. First note that | cos(xt)f(x)| ≤ |f(x)|, so cos(xt)f(x) ∈ L1 for all t ∈ R.
Thus F (t) exists. Now, 1

h (F (t+h)−F (t)) =
∫

1
h (cos(x(t+h))−cos(xt))f(x)dλ.

Let hn be a sequence of reals converging to 0. Then limn→∞
1
hn

(cos(x(t+hn))−
cos(xt)) = −x sin(xt). Since this sequence converges, it must be bounded by a
constantM . Then | 1

hn
(cos(x(t+hn))−cos(xt))f(x)| ≤ M |f(x)| for all n, so that

the sequence of functions is dominated by M |f |, which is integrable. We can
apply the LDCT to get that limh→0

1
h (F (t+h)−F (t)) = limn→∞

1
hn

(F (t+hn)−
F (t)) = limn→∞

∫
1
hn

(cos(x(t + hn)) − cos(xt))f(x)dλ =
∫
−x sin(xt)f(x)dλ.

This integral is well defined since | − x sin(xt)f(x)| ≤ |xf(x)|, and xf(x) is
integrable.

It remains to show F ′ is continuous. Let hn be a sequence of reals converg-
ing to 0. Let gn(x) = −x sin(x(t + hn))f(x) for fixed t. Pointwise, gn(x) →
−x sin(xt)f(x). Also, |gn(x)| ≤ |xf(x)| = |g(x)|, so the sequence is dominated
by |g|. We then apply LDCT to get F ′(t+hn) =

∫
gn(x)dλ →

∫
−x sin(xt)f(x)dλ =

F ′(t), so F ′ is continuous as desired.
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3 Problem 3

Let X be a σ-finite measure space. Let f ∈ L1(X).

a) LetAn ∈ A be a sequence such that µ(An) → 0. Show that limn→∞
∫
An

fdµ =
0.

Proof. First suppose f ≥ 0. Let En = f−1([n,∞]). Then nµ(En) ≤
∫
En

f ≤∫
f < ∞ implies µ(En) → 0, and furthermore we have En → E = f−1({∞}).

For any x /∈ E,f(x) < ∞ so there is N > f(x), so that x /∈ En for all n ≥ N .
Thus the functions fn = fχEn

converge pointwise to 0 almost everywhere.
Further more, |fχEn | ≤ f for all n, so the sequence fn is dominated by the
integrable function f . It follows that

∫
En

f → 0.

Write
∫
An

f =
∫
An∩Em

f +
∫
An∩Ec

m
f . We have 0 ≤

∫
An∩Em

f ≤
∫
Em

f since

f ≥ 0. On Ec
m, f ≤ m by definition. Thus 0 ≤

∫
An∩Ec

m
f ≤ mµ(An). For ε > 0,

choose m large enough so that
∫
Em

f < ε/2; we can do this since
∫
En

f → 0.

Then, choose N large enough so that µ(An) < ε/(2m) for all n ≥ N ; we can do
this since µ(An) → 0. Then we have

∫
An

f < ε/2+mε/(2m) = ε for all n ≥ N ,

so
∫
An

f → 0 for f ≥ 0.

In general, we have f = f+ − f−, where f+, f− ≥ 0. Then
∫
An

f =
∫
An

f+ −∫
An

f− → 0− 0 = 0.

b) Prove or disprove: Let (Xk)k be a sequence in A such that µ(Xk) < ∞
and

⋃
Xk = X. Let Fn =

⋃
k≥n Xk. Then limn→∞

∫
Fn

fdµ = 0.

Proof. The statement is false. Let X = R with the Lebesgue measure. Consider
Xk = [−k, k]. Then Fn =

⋃
k≥n Xk = R for all n, so limn→∞

∫
Fn

f =
∫
f is not

0 for any function with non-zero integral (say f(x) = e−x2

).
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4 Problem 4

Let V be a Banach space with dual V ∗. For u ∈ V define T (u) : V ∗ → F by
T (u)(φ) = φ(u).

a) Show that T (u) ∈ (V ∗)∗ and find the norm of T (u).

Proof. Let φ, η ∈ V ∗ and a ∈ F . Then T (u)(aφ+ η) = (aφ+ η)(u) = aφ(u) +
η(u) = aT (u)(φ) + T (u)(η), so T (u) is linear.

For any φ ∈ V ∗, |T (u)(φ)| = |φ(u)| ≤ ||φ||||u||, so ||T (u)|| ≤ ||u||. Thus
T (u) is bounded, so T (u) ∈ (V ∗)∗.

Now, let φ be the identity map on V . Then |T (u)(φ)| = |φ(u)| = ||u||. Since
||φ|| = 1, we have that ||u|| ∈ {|T (u)(φ)| | ||φ|| = 1}. Hence ||T (u)|| ≥ ||u||,
since ||T (u)|| is the least upper bound of this set. From the preceding paragraph,
we then have ||T (u)|| = ||u||.

b) Show that T is linear, injective, and bounded with ||T || ≤ 1.

Proof. Let a ∈ F , u, v ∈ V . Then for any φ ∈ V ∗, T (au+ v)(φ) = φ(au+ v) =
aφ(u) + φ(v) = aT (u)(φ) + T (v)(φ) = (aT (u) + T (v))(φ), so T (au + v) =
aT (u) + T (v). Thus T is linear.

Now suppose u ∈ kerT . That is, for any φ ∈ V ∗, T (u)(φ) = φ(u) = 0. Then
we may take φ to be the identity map, in which case φ(u) = 0 implies u = 0.
Thus T is injective.

From part a, ||T (u)|| = ||u|| for all u, so ||T || ≤ 1. (In fact ||T || = 1.)
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