MATH 7311 Homework 6

Andrea Bourque

October 2021

1 Problem 1

For $f \in \mathcal{M}_+$, let μ_f be the measure $\mu_f(A) = \int_A f d\mu$. Show that for all $g \in \mathcal{M}_+$ we have $\int g d\mu_f = \int f g d\mu$.

Proof. First we consider when g is a simple function: $g = \sum_j c_j \chi_{E_j}$ for some partition E_j of X. Then $\int g d\mu_f = \sum_j c_j \mu_f(E_j) = \sum_j c_j \int_{E_j} f d\mu = \sum_j c_j \int f \chi_{E_j} d\mu = \int f (\sum_j c_j \chi_{E_j}) d\mu = \int f g d\mu$.

Now, $\int g d\mu_f = \sup\{\int \varphi d\mu_f \mid 0 \leq \varphi \leq g, \varphi \text{ simple}\} = \sup\{\int f \varphi d\mu \mid 0 \leq \varphi \leq g, \varphi \text{ simple}\}$. If $\{\varphi_n\}_n$ is a sequence of simple functions which monotone converges to g, then $f\varphi_n \to fg$ monotone as well, since f is non-negative. By the monotone convergence theorem, $\int f \varphi_n d\mu \to \int f g d\mu$. Furthermore, this convergence is monotone increasing. We also have $\int f \varphi d\mu \leq \int f g d\mu$ for all $0 \leq \varphi \leq g$, so that $\int f g d\mu$ is an upper bound for $\{\int f \varphi d\mu \mid 0 \leq \varphi \leq g, \varphi \text{ simple}\}$. Thus $\sup\{\int f \varphi d\mu \mid 0 \leq \varphi \leq g, \varphi \text{ simple}\} = \int f g d\mu$, so $\int g d\mu_f = \int f g d\mu$. \square

2 Problem 2

Let $f \in \mathcal{M}_+$ and assume that $\int f d\mu < \infty$. Let $\varepsilon > 0$. Show that there exists $A \in \mathcal{A}$ such that $\mu(A) < \infty$ and $\int_A f d\mu > \int f d\mu - \varepsilon$.

Proof. Let $E_n=f^{-1}([-n,n])$. Then the E_n are an increasing sequence with limit X. For all n, $f\chi_{E_n}\leq f$, so $\int f\chi_{E_n}d\mu\leq \int fd\mu$. The integral on the left is also equal to $\int_{E_n}fd\mu$. Since $E_n\subset E_{n+1}$, we have $f\chi_{E_n}\leq f\chi_{E_{n+1}}$. Thus, by the MCT, $\lim_n\int f\chi_{E_n}d\mu\to \int fd\mu$. Since the sequence of integrals is bounded above by $\int fd\mu$, there is some N such that for all n>N, $\int f\chi_{E_n}d\mu>\int fd\mu-\varepsilon$. Thus E_n is a set with finite measure satisfying $\int_{E_n}fd\mu=\int f\chi_{E_n}d\mu>\int fd\mu-\varepsilon$.

3 Problem 3

Let $f:[0,1]\to [0,\infty)$ be continuous on (0,1]. Assume further that $\lim_{x\to 0^+} f(x)=\infty$ and that the improper Riemann integral $\int_0^1 f(x)dx$ exists. Show that f is Lebesgue integrable on [0,1] and that $\int_{[0,1]} fd\lambda = \int_0^1 f(x)dx$.

Proof. For a simple function φ with $0 \le \varphi \le f$, we have $\int_{[0,1]} \varphi d\lambda = \int_0^1 \varphi dx \le \int_0^1 f dx$. Thus $\int_0^1 f dx$ is an upper bound for $\{\int \varphi d\lambda \mid 0 \le \varphi \le f, \varphi \text{ simple}\}$, so f is Lebesgue integrable.

Let n be a positive integer. Let $x_j=j/n$ for j=0,1,...,n. Let $m_j=\inf_{x\in[x_{j-1},x_j]}f(x)$. Then $\int_0^1fdx=\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^nm_j$. Let $\varphi_n=\sum_{j=1}^nm_j\chi_{[x_{j-1},x_j]}$. This is a sequence of simple functions which increases monotone to f. Thus $\lim_{n\to\infty}\int_{[0,1]}\varphi_nd\lambda=\int_{[0,1]}fd\lambda$. But $\int_{[0,1]}\varphi_nd\lambda=\sum_{j=1}^nm_j(x_j-x_{j-1})=\frac{1}{n}\sum_{j=1}^nm_j$, so we have $\int_0^1fdx=\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^nm_j=\lim_{n\to\infty}\int_{[0,1]}\varphi_nd\lambda=\int_{[0,1]}fd\lambda$.

4 Problem 4

For each part, check whether the limit exists, and if so, find the value. a) $\lim_{n\to\infty}\int_1^n(1-\frac{x}{n})^ndx$.

Proof. We can compute
$$\int_1^n (1-\frac{x}{n})^n dx$$
 by taking $u=1-\frac{x}{n}$, giving $-n\int_{1-\frac{1}{n}}^0 u^n du=\frac{-n}{n+1}(0-(1-\frac{1}{n})^{n+1})$, which converges to e^{-1} .

b)
$$\lim_{n\to\infty} \int_{1}^{2n} (1-\frac{x}{n})^n dx$$
.

Proof. Computing the integral, we get $\frac{-n}{n+1}((-1)^{n+1}-(1-\frac{1}{n})^{n+1})$, which doesn't converge, since it tends to alternate between $e^{-1}-1$ and $e^{-1}+1$.