MATH 7311 Homework 4

Andrea Bourque

October 2021

1 Problem 1

For $n \in \mathbb{N}$, let $f_n(x) = \sin(\pi x/n)$ for $x \ge 0$. Show that $f_n \to 0$ pointwise, but not uniformly.

Proof. For any $x \ge 0$, πx is finite. Thus $\pi x/n \to 0$, so $f_n(x) \to \sin(0) = 0$. Suppose $f_n \to 0$ uniformly. Then let $N \in \mathbb{N}$ such that for all $n \ge N$, $|f_n(x) - 0| = |f_n(x)| < 1$ for all $x \ge 0$. However, for any n, x = n/2 satisfies $f_n(x) = 1$, a contradiction. Thus f_n does not converge uniformly. \Box

For p > 0, define $f_n = n^{-p} \chi_{[n,\infty)}$. Show that $f_n \to 0$ uniformly and in measure.

Proof. Since uniform convergence implies almost uniform convergence, which then implies convergence in measure, it suffices to show that $f_n \to 0$ uniformly.

Let $\varepsilon > 0$. Choose $N > \varepsilon^{-1/p}$, so that $N^{-p} < \varepsilon$. Furthermore, for any $n \ge N, n^{-p} \le N^{-p} < \varepsilon$. For $x < n, f_n(x) = 0$, and for $x \ge n, f_n(x) = n^{-p} < \varepsilon$, so that for all $x, |f_n(x) - 0| < \varepsilon$. Thus $f_n \to 0$ uniformly. \Box

For p > 0, let $f_n = n^p \chi_{[n,\infty)}$. Show that $f_n \to 0$ pointwise, but not almost uniformly and not in measure.

Proof. For $x \ge 0$, there is $N \in \mathbb{N}$ such that x < N, i.e. $x \notin [N, \infty)$. Furthermore, for all $n \ge N$, $x \notin [n, \infty)$. Then $f_n(x) = 0$ for all $n \ge N$, so $f_n(x) \to 0$.

Since almost uniformly convergence implies convergence in measure, it suffices to show that f_n does not converge to 0 in measure.

Let $E_n = \{x \in \mathbb{R} \mid |f_n(x) - 0| \ge 1\}$. If x < n, then $f_n(x) = 0$, so $x \notin E_n$. If $x \ge n$, then $f_n(x) = n^p \ge 1$, so $x \in E_n$. Therefore, $E_n = [n, \infty)$, so for all n, $\mu(E_n) = \infty$. Then $\mu(E_n) \not\to 0$, so f_n does not converge in measure. \Box

Assume that $p \ge 0$. Define $f_n = n^p \chi_{[n,n+1)}$. Show that $f_n \to 0$ pointwise, but f_n does not converge in measure.

Proof. For any x there is $N \in \mathbb{N}$ such that for all $n \ge N$, $x \notin [n, n+1)$. Then

 $f_n(x) = 0 \text{ for all } n \ge N, \text{ so } f_n(x) \to 0.$ Let $E_n = \{x \in \mathbb{R} \mid |f_n(x) - 0| \ge 1\}.$ If x < n, then $f_n(x) = 0$, so $x \notin E_n$. If $x \in [n, n+1)$, then $f_n(x) = n^p \ge 1$, so $x \in E_n$. If $x \ge n+1$, then $f_n(x) = 0$, so $x \notin E_n$. $x \notin E_n$. Therefore, $E_n = [n, n+1)$, so for all $n, \mu(E_n) = 1$. Then $\mu(E_n) \not\rightarrow 0$, so f_n does not converge in measure.

Let (X, \mathcal{A}, μ) be a measure space. Let $f_n, g_n : X \to \mathbb{R}$ be sequences of measurable functions, and let $f, g : X \to \mathbb{R}$ be measurable. Assume that $f_n \to f$ almost everywhere and $g_n \to g$ almost everywhere. Show that for every $\alpha \in \mathbb{R}$, we have $\alpha f_n + g_n \to \alpha f + g$ almost everywhere.

Proof. Let N_1 be a null set such that $f_n \to f$ on N_1^C , and let N_2 be a null set such that $g_n \to g$ on N_2^C . Then $N_1 \cup N_2$ is also a null set, since $\mu(N_1 \cup N_2) \leq \mu(N_1) + \mu(N_2) = 0 + 0 = 0$. Furthermore, $(N_1 \cup N_2)^C = N_1^C \cap N_2^C$, so on this set $f_n \to f$ and $g_n \to g$. Then $|\alpha f(x) + g(x) - (\alpha f_n(x) + g_n(x))| \leq |\alpha||f(x) - f_n(x)| + |g(x) - g_n(x)| \to |\alpha|0 + 0 = 0$ for all $x \in N_1^C \cap N_2^C$, which is the complement of a null set, showing that $\alpha f_n + g_n \to \alpha f + g$ almost everywhere. \Box