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Problem 1

Let g = sl2 and let W = {e, (12)} be its Weyl group.

(a) Let Z = StN be the Steinberg variety of g. Let B denote the flag variety
of g. For w ∈ W, Yw denote the diagonal SL2 orbit in B2 consisting of pairs
of flags in relative position w. Consider the projection π2 : Z → B2. Calculate
(π2)−1(Yw) for each w ∈ W.

(b) Recall the objects [Λ0
w], T

∗
w. Show that

[Λ0
e] = T ∗

e ,

[Λ0
(12)] = T ∗

e + T ∗
(12).

Proof. (a) Note that Ye is just the diagonal in B2, since all Borels are conjugate.
It follows that Y(12) is everything else, i.e. pairs (b1, b2) with b1 ̸= b2. Then

(π2)−1(Ye) = {(n, b, b) ∈ Z} ∼= Ñ ,

(π2)−1(Y(12)) = {(n, b1, b2) ∈ Z|b1 ̸= b2}.

(b) From the general theory shown in class, the first equation is true, since
e is the minimal element in W. Similarly, we know from general theory that
[Λ0

(12)] = nT ∗
e + T ∗

(12) for some n. Therefore, we only need to show that n = 1.

Since [Λ0
w] ∗ [Λ0

w′ ] = [Λ0
ww′ ], it is equivalent to show that T ∗

(12) ∗T
∗
(12) = −2T ∗

(12).
But I’m not sure how to do this.
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Problem 2

Let g be a complex semisimple Lie algebra and let N be the nilpotent cone of
g. Show that for evey x ∈ N , the trivial representation of the component group
C(x) occurs in the C(x)-representation H(Bx).

Proof. The statement means that HomC(x)(C, H(Bx)) is non-zero; there is a
non-zero C(x) equivariant map C → H(Bx). It is equivalent to give a non-
zero element of H(Bx) which is fixed by C(x) action. Since the group action
permutes the (classes of the) irreducible components, the element given by the
sum of fundamental classes of irreducible components is fixed by C(x). It is
non-zero since the fundamental classes of irreducible components form a basis
for H(Bx).
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Problem 3

(a) Let G = SL3. Use convolution to show that H(Be) is isomorphic to the
trivial representation of S3, where e is any regular nilpotent element in sl3.

(b) Verify Springer-Spaltenstein’s theorem for e =

0 0 1
0 0 0
0 0 0

.

Proof. (a) Since Be is a point (regular nilpotents are contained in a unique
Borel), we know H(Be) is a 1-dimensional space, spanned by the fundamental
class of a point: [•]. To show H(Be) is the trivial representation, it suffices to
show [Λ0

w] ∗ [•] = [•] for all w ∈ S3, or even just for one transposition. But I’m
not sure how to do this.

(b) Recall (Yun’s notes, 1.3.4) that Be is a wedge sum of two copies of P1; one
copy corresponds to flags with V2 = {v1, v2}, the other copy corresponds to
flags with V1 = {v1}, and they intersect at the standard flag. Thus Be has two
irreducible component: they are the two copies of P1.

The partition for e is λ = 2 + 1. Then there are two standard Young tableaux:

1 2

3
and

1 3

2
. The first one corresponds to flags where e acts non-trivially

on V/V1, and the other corresponds to flags where e acts trivially on V3/V1. Let
V• ∈ Be, and let V1 = ⟨u1⟩. Then there is some u2 ∈ V such that ⟨u1, u2⟩ =
⟨v1, v2⟩. Then V = ⟨u1, u2, v3⟩, so that V/V1 = ⟨[u2], [v3]⟩. We have e[u2] =
[eu2] = [0], since u2 ∈ ⟨v1, v2⟩ = ker e. We also have e[v3] = [ev3] = [v1]. Then
we see that e acts trivially on V/V1 if and only if v1 ∈ V1, i.e. V1 = ⟨v1⟩. The
inverse image of the first standard Young tableau is then one of the copies of P1

with a point removed, and the inverse image of the other tableau is the other
copy of P1. The latter space is already closed and irreducible. The first space has
closure equal to the copy of P1 it is contained in. Thus, the closures of inverse
images of standard Young tableau are exactly the irreducible components.
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Problem 4

Let Ŝn denote the set of representatives of the isomorphism classes of irreducible
representations of Sn. Use the geometry of Steinberg varieties to show:

(a)
∑
χ∈Ŝn

(dim(χ))2 = |Sn|.

(b)
∑
χ∈Ŝn

dim(χ) = #{involutions in Sn}.

Proof. (a) Let G = SLn. Then the Weyl group of G is Sn. Let Z be the
Steinberg variety. On one hand, the number of irreducible components of Z
is equal to |Sn|, since the irreducible components are given by T ∗

Yw
(B2) for

w ∈ Sn. On the other hand, the irreducible components of Z can be identified
as the closures of irreducible components of ZO = Õ ×O Õ for nilpotent orbits
O. Furthermore, the irreducible components of ZO are in correspondence with
C(x) orbits on pairs of irreducible components of Bx, for any x ∈ O. Since G is
connected, C(x) is trivial, so we find that the irreducible components of ZO in
this case are in correspondence with pairs of irreducible components of Bx, for
any x ∈ O. Since Springer fibers are equidimensional, dimH(Bx) is the number
of irreducible components of Bx. From the Springer correspondence, again using
the fact that C(x) is trivial, we know that the irreducible representations of Sn

are in one to one correspondence with nilpotent orbits O, and in particular,
given by H(Bx) for x ∈ O. Putting everything together,∑
χ∈Ŝn

(dim(χ))2 =
∑
O⊂N

(dim(H(Bx)))
2 = #{irreducible components of Z} = |Sn|.

(b) There is an involution on Z given by swapping the factors of Ñ . Let us
analyze which irreducible components of Z are fixed by this involution. On
the one hand, an irreducible component may be given by a pair of irreducible
components of Bx, for x in some nilpotent orbit O. This irreducible component
is then clearly fixed if and only if the two components of Bx are the same. Then
the number of irreducible components of Z fixed by the involution is given by
the sum over nilpotent orbits of the number of irreducible components of Bx. As
before, we know that the number of irreducible components of Bx is dimH(Bx).
We also know that the H(Bx) as x ranges through representatives for nilpotent
orbits gives us the irreducible representations of Sn. In other words, we have∑

χ∈Ŝn

dim(χ) =
∑
O⊂N

dimH(Bx)

= #{irreducible components of Z fixed by swapping factors}.

On the other hand, the irreducible components of Z are given by closures of
conormal bundles to Yw. This component is fixed by swapping factors if and
only if the orbit Yw is fixed. Explicitly, Yw is the G orbit (b, wb), so swapping
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factors gives the G orbit of (wb, b), which is the same as the G orbit of (b, w−1b).
Thus, the irreducible component of Z corresponding to w is fixed by swapping
factors if and only if w = w−1, i.e. w is an involution. Combining this with our
previous observation finishes the problem.
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Problem 5

Let R be a commutative ring.

(a) Suppose that Spec(R) is connected, so that R has no nontrivial idempotents.
Let f = ant

n + · · · ∈ R((t)). Show that f is invertible in R((t)) iff there exists
an m such that ai is nilpotent for i ≤ m and am+1 is invertible in R.

(b) Let L be a lattice in R((t))n and let Λ denote the standard lattice. Show
that there exists and N ∈ Z, N ≥ 0 such that tNΛ ⊂ L ⊂ t−NΛ.

(c) Let L be a lattice. Show that there exists f1, . . . , fk ∈ R such that R =
(f1, . . . , fk) and L⊗R[[t]] Rfi [[t]] is a free Rfi [[t]] module for all i.

Proof. (a) We use the following facts from commutative algebra without proof.
They are given as exercises in chapter 1 of Atiyah-MacDonald.

Fact 1. Nilpotent elements form an ideal.

Fact 2. A nilpotent plus a unit is a unit.

Fact 3. An element f = a0 + a1t+ · · · ∈ R[[t]] is a unit iff a0 ∈ R.

Suppose that f = ant
n+· · · ∈ R((t)) and there exists an m such that ai is nilpo-

tent for i ≤ m and am+1 is invertible in R. Also assume an ̸= 0. Thenm+1 ≥ n.
Let g = ant

n + . . . amtm. In particular, if m+ 1 = n, then g = 0. The elements
ait

i for n ≤ i ≤ m are nilpotent, since if aki = 0, then (ait
i)k = aki t

ik = 0.
Then g is a finite sum of nilpotent elements, so it is nilpotent by fact 1. Now
let h = am+1 + am+2t + . . . , so that f − g = tm+1h. Since am+1 is a unit in
R, h is a unit in R[[t]] by fact 3. Since R[[t]] ⊂ R((t)), we have h is a unit in
R((t)). We then have t−m−1h−1 is an inverse to f − g. Then f = g+ (f − g) is
a sum of a nilpotent and a unit, so f is a unit by fact 2.

Conversely, suppose f = ant
n+ · · · ∈ R((t)) is a unit, and an ̸= 0. First suppose

that ai is nilpotent for all i. Let f
−1 = bkt

k + . . . . Then we have

1 = anb−n + · · ·+ a−kbk.

The right hand side of the equation is a finite linear combination of nilpotent
elements in R, so it is nilpotent by fact 1. But 1 cannot be nilpotent (assuming
R is not allowed to be the zero ring), so we have a contradiction. Therefore,
there is some smallest integer m such that am+1 is not nilpotent, and ai is
nilpotent for i < m. In particular, g = ant

n + · · ·+ amtm is nilpotent, as previ-
ously argued. Therefore, we have that f−g = am+1t

m+1+. . . is a unit by fact 2.

We want to show that am+1 is a unit in R. Since f−g is a unit iff (f−g)t−m−1 =
am+1+am+2t+ . . . is a unit, we rename our element to f = a0+a1t+ . . . , with
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a0 not nilpotent. Let f−1 = bnt
n + . . . , with bn ̸= 0. If n ≥ 1, then the lowest

possible power of t in ff−1 is t, which is impossible. Thus, n < 1. If n = 0,
then upon comparing the coefficients of ff−1 and 1, we get a0b0 = 1, so a0 is
a unit, as desired. Now suppose n < 0. Again, comparing coefficients gives us
the following system of equations:

a0bn = 0,

a0bn+1 + a1bn = 0,

...

a0b0 + · · ·+ a−nbn = 1.

Now, multiplying the second equation by a0 gives a20bn+1. Similarly, we get
ak+1
0 bn+k = 0 for 0 ≤ k < −n. Multiplying the last equation by a−n

0 gives
a−n+1
0 b0 = a−n

0 . Since a0 is not nilpotent, the right hand side is not 0. We can
multiply this equation by arbitrarily high powers of a0 to get aN+1

0 b0 = aN0 for
all N ≥ −n, and the right hand side is never 0. By raising both sides to arbi-
trarily high powers, we get aNM

0 (a0b0)
M = aNM

0 for all N ≥ −n and M ≥ 1.
The right hand side is still never 0, which shows that a0b0 is not nilpotent. Now,
consider x = (a0b0)

−n. Then x2 = a−2n−1
0 a0b0b

−2n−1
0 = a−2n−1

0 b−2n−1
0 = · · · =

a−n+1
0 b0b

−n
0 = a−n

0 b−n
0 = x. Thus, x is idempotent. By our assumption on R,

we either have x = 0 or x = 1. But we know a0b0 is not nilpotent, so x = 1.
Thus a0a

−n−1
0 b−n

0 = 1, so a0 is a unit.

(b) By definition, there are g1, . . . , gm ∈ R[[t]] such that (g1, . . . , gm) = R[[t]]
and Li := Lgi := L ⊗R[[t]] R[[t]]gi is a free R[[t]]gi module. Choose a basis
vi1, . . . , v

i
n for each Li. In terms of the standard basis ei1, . . . , e

i
n for Λi, write the

vectors vij = f i
j(1)e

i
1 + . . . f i

j(m)eim. Further write f i
j(k) = g

−a(j,k)
i f̂ i

j(k), with

f̂ i
j(k) ∈ R((t)). In fact, since gi is a unit in R[[t]]gi , we may rescale our basis to

assume a(j, k) = 0 for all j and k, so that f i
j(k) can be represented by an element

f̂ i
j(k) ∈ R((t)). Let −N ′

i be the minimum of the degrees of f̂ i
j(k) and let N ′′

i

be the maximum of the degrees of f̂ i
j(k). Then tN

′′
i Λi ⊂ Li ⊂ t−N ′

iΛi. Let Ni

be the maximum of N ′
i and N ′′

i , so tNiΛi ⊂ Li ⊂ t−NiΛi. Finally, let N be the
maximum of the Ni. Then tNΛi ⊂ Li ⊂ t−NΛi for all i, so tNΛ ⊂ L ⊂ t−NΛ.

(c) By definition, there are g1, . . . , gm ∈ R[[t]] such that (g1, . . . , gm) = R[[t]]
and Li := Lgi := L⊗R[[t]] R[[t]]gi is a free R[[t]]gi module. Order the gi so that
g1, . . . , gk have nonzero constant coefficient, and gk+1, . . . , gm have zero constant
coefficient. Since (g1, . . . , gm) = R[[t]], there exists elements a1, . . . , am ∈ R[[t]]
such that a1g1 + . . . amgm = 1. But the terms ak+1gk+1 + . . . amgm can only
contribute multiples of t, so a1g1 + . . . akgk = 1 + tb, for some b ∈ R[[t]]. If we
denote the constant coefficients of ai and gi by a′i and fi, and we reduce the
previous equation mod t, we get a′1f1 + · · ·+ a′kfk = 1. Thus (f1, . . . , fk) = R.
From here on, we take “for all i” to mean i ∈ {1, . . . , k}.
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Now, we now that L ⊗R[[t]] R[[t]]gi is a free R[[t]]gi module for all i. We want
to show that L⊗R[[t]] Rfi [[t]] is a free Rfi [[t]] module for all i. By Fact 3 stated
earlier, gi is invertible in Rfi [[t]], so the base change to Rfi [[t]] factors through
the base change to R[[t]]gi . Since the base change of a free module is a free
module, it follows that L⊗R[[t]] Rfi [[t]] is a free Rfi [[t]] module.
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