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Problem 1

Let X be a non-compact, connected, oriented smooth manifold of dimension n.
Show that H, (X;C) = 0.

Proof. Since X is oriented, we have by Poincaré duality H,(X;C) = H?(X;C).
Since X is non-compact, any compact subset K must be proper. H?(X;C) is the
direct limit of H°(X, X — K;C) as K ranges over compact subsets of X. Since
X is connected and X — K is always non-empty, we have H°(X, X — K;C) =0
for all K, so H(X;C) = 0. O



Problem 2

Let X, Y be quasi-projective varieties over C. Show that if f : X — Y is proper,
then it is projective.

Proof. proper = separated, finite type, universally closed. projective = factors
into closed immersion X — P" x Y and projection P* x Y — Y.

Since X is quasi-projective, there is an immersion i : X — P™. Since P" is
separated, the diagonal morphism A : P — P™ x P" is a closed immersion. Let
us show that the following diagram is a pullback square:

X — 5 pr
(1,4) A
X x P T P™ x P"

The diagram obviously commutes. Suppose we are given maps g : Z — P™ and
g : Z — X x P" such that the following diagram also commutes:

z ? P"
g A
X x P T P™ x P”
1,
Let g% = myg and let gp. = meg’. Commutativity of this diagram means

ig’ = g = gpn. We claim that there is a unique map ¢ : Z — X such that
g = (1,i)g' and g = ig'. If a map were to exist, the first condition implies
that ¢’y = ¢'. Therefore, g’ is the unique map we are looking for. The other
conditions gp. = ig' and g = ig' are consistent with this choice by the com-
mutativity relations from before. Therefore, the map (1,7) : X — X x P is a
closed immersion by Stacks tag 01JU.

Now, since f : X — Y is proper, the base-change (f,1) : X x P* - Y x P" is
closed. Thus, the map (f,7) : X — Y x P™ is closed. Also, it is an immersion,
since one of its components is an immersion. Since the first component of this

map is f, we have shown f is projective.
O



Problem 3
Compute HZM(C;C) of the double cone
C={(z,y,2) eR® | 2® +y* = 2°}.

Proof. C can be compactified into S? v S? by adding two points to close off
each side of the double cone. Thus HEM(C;C) = H,.(S? v 52, {*1,2}). For
simplicity, let X = S?V S? and P = {1, %5}. There is a long exact sequence in
reduced homology relating H, (X, P) in terms of H,(X) and H,(P). We have

F(X) = {C2 o

0 i+£2,
Hi(P)Z{o Z;éo.

For i > 2, the long exact sequence reads 0 — HBM (C) — 0, s0 HPM(C) = 0. For
i = 2, the long exact sequence reads 0 — C? — HPM(C) — 0,s0 HZM(C) = C2.
Finally, the tail end of the sequence reads

0— HPM(C) - C—0— HEPM(C) — 0,

so HPM(C) = C and HPM(C) = 0. In summary,

C? i=
HPMC)={C i=1
0 else.



Problem 4

Let X be an algebraic variety over C equipped with a filtration by closed sub-
varieties

X=X,20Xn.1D2..20Xyo=9

such that

ki
X, — X; = |_| Ao,
j=1

Show that the classes [A™:7] form a C-basis for HEM (X).

Proof. (Note: I will not be writing BM). We induct on m. For the base case,
X is a finite disjoint union of affine spaces. Let U C X be the union of the
highest dimensional (say complex dimension d) affine spaces appearing in X,
and let Z be the complement of U. We know H;(U) only lives in ¢ = 2d, with
basis corresponding to each affine space in U (they are the (top dimensional)
irreducible components of U). By induction on d, we can assume that H;(Z) is
only nonzero for even ¢ with 7 < 2d. We have an exact sequence

By our hypotheses, we get an isomorphism H;(X) — H;(U) only when i = 2d,
an isomorphism H;(X) = 0 for i > 2d, and an isomorphism H;(Z) — H;(X)
for 7 even and less than 2d. This shows that the classes corresponding to the
affine spaces give a basis for H,(X).

Now assume the result is true for spaces with a filtration X = X,,,_1 D --- D
Xo =@, and let X have a filtration X = X,,, D --- D Xg = &. Then the result
holds for closed subset Z := X,,,_1 and open subset U := X — X,,,_1, the latter
of which is a union of affine spaces. Once again we have an exact sequence

Now, H;(Z) = 0 = H;(U) for i odd, so H;(X) = 0 as well. For ¢ even, i — 1
and ¢ + 1 are odd, so we have a short exact sequence of vector spaces, implying
H;(X)= H;(Z)®H;(U). In particular, the bases for H,(Z) and H,(U) combine
to give us a basis for H,(X) as desired. O



Problem 5

Use Problem 4 to do these computations.
(1) Compute the singular cohomology of CP".

(2) Let G be a complex semisimple algebraic group and let B be a Borel sub-
group. Compute the singular cohomology of G/B.

Proof. (1) We have a filtration X; = CP/~! for 0 < j < n+1 with X;—X,;_; =
AJ=1. Each A77! is dense in X, so A7~! = X;. Thus, the [X;] form a basis
for HBM (CP"), with [X;] € HZB(’%I)(C]P’"). By Poincaré duality, the singular
cohomology will also have 1 generator in each even degree, given by the duals
to the classes [Xj].

(2) By the Bialynicki Birula decomposition, and by a previous homework prob-
lem (essentially the Bruhat decomposition, but we need the affine part), we
know that G/B is a finite disjoint union of affine spaces. Explicitly, the affine
spaces are the B orbits of the coset wB for w € Wy for a maximal torus T' C B.
These spaces have dimension given by the length of w. The closure of B(wB)
is the union of B(w’'B) for v’ < w in the Bruhat order. By Problem 4, the
classes of these closures give us a basis for the Borel Moore homology of G/B.
By duality, the duals of these classes give us a basis for the singular cohomology
of G/B. O



