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Problem 1

Let X be a non-compact, connected, oriented smooth manifold of dimension n.
Show that Hn(X;C) = 0.

Proof. Since X is oriented, we have by Poincaré duality Hn(X;C) ∼= H0
c (X;C).

SinceX is non-compact, any compact subsetK must be proper. H0
c (X;C) is the

direct limit of H0(X,X −K;C) as K ranges over compact subsets of X. Since
X is connected and X −K is always non-empty, we have H0(X,X −K;C) = 0
for all K, so H0

c (X;C) = 0.
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Problem 2

Let X,Y be quasi-projective varieties over C. Show that if f : X → Y is proper,
then it is projective.

Proof. proper = separated, finite type, universally closed. projective = factors
into closed immersion X → Pn × Y and projection Pn × Y → Y .

Since X is quasi-projective, there is an immersion i : X → Pn. Since Pn is
separated, the diagonal morphism ∆ : Pn → Pn×Pn is a closed immersion. Let
us show that the following diagram is a pullback square:

X Pn

X × Pn Pn × Pn

i

∆(1,i)

(i,1)

The diagram obviously commutes. Suppose we are given maps g : Z → Pn and
g′ : Z → X × Pn such that the following diagram also commutes:

Z Pn

X × Pn Pn × Pn

g

∆g′

(i,1)

Let g′X = π1g
′ and let g′Pn = π2g

′. Commutativity of this diagram means
ig′X = g = g′Pn . We claim that there is a unique map g! : Z → X such that
g′ = (1, i)g! and g = ig!. If a map were to exist, the first condition implies
that g′X = g!. Therefore, g′X is the unique map we are looking for. The other
conditions g′Pn = ig! and g = ig! are consistent with this choice by the com-
mutativity relations from before. Therefore, the map (1, i) : X → X × Pn is a
closed immersion by Stacks tag 01JU.

Now, since f : X → Y is proper, the base-change (f, 1) : X × Pn → Y × Pn is
closed. Thus, the map (f, i) : X → Y × Pn is closed. Also, it is an immersion,
since one of its components is an immersion. Since the first component of this
map is f , we have shown f is projective.
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Problem 3

Compute HBM
∗ (C;C) of the double cone

C = {(x, y, z) ∈ R3 | x2 + y2 = z2}.

Proof. C can be compactified into S2 ∨ S2 by adding two points to close off
each side of the double cone. Thus HBM

∗ (C;C) = H∗(S
2 ∨ S2, {∗1, ∗2}). For

simplicity, let X = S2 ∨ S2 and P = {∗1, ∗2}. There is a long exact sequence in
reduced homology relating H∗(X,P ) in terms of H̃∗(X) and H̃∗(P ). We have

H̃i(X) =

{
C2 i = 2

0 i ̸= 2,

H̃i(P ) =

{
C i = 0

0 i ̸= 0.

For i > 2, the long exact sequence reads 0 → HBM
i (C) → 0, soHBM

i (C) = 0. For
i = 2, the long exact sequence reads 0 → C2 → HBM

2 (C) → 0, soHBM
2 (C) = C2.

Finally, the tail end of the sequence reads

0 → HBM
1 (C) → C → 0 → HBM

0 (C) → 0,

so HBM
1 (C) = C and HBM

0 (C) = 0. In summary,

HBM
i (C) =


C2 i = 2

C i = 1

0 else.
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Problem 4

Let X be an algebraic variety over C equipped with a filtration by closed sub-
varieties

X = Xm ⊃ Xm−1 ⊃ ... ⊃ X0 = ∅

such that

Xi −Xi−1
∼=

ki⊔
j=1

Ani,j .

Show that the classes [Ani,j ] form a C-basis for HBM
∗ (X).

Proof. (Note: I will not be writing BM). We induct on m. For the base case,
X is a finite disjoint union of affine spaces. Let U ⊂ X be the union of the
highest dimensional (say complex dimension d) affine spaces appearing in X,
and let Z be the complement of U . We know Hi(U) only lives in i = 2d, with
basis corresponding to each affine space in U (they are the (top dimensional)
irreducible components of U). By induction on d, we can assume that Hi(Z) is
only nonzero for even i with i < 2d. We have an exact sequence

· · · → Hi+1(U) → Hi(Z) → Hi(X) → Hi(U) → Hi−1(Z) → . . .

By our hypotheses, we get an isomorphism Hi(X)
∼−→ Hi(U) only when i = 2d,

an isomorphism Hi(X) = 0 for i > 2d, and an isomorphism Hi(Z)
∼−→ Hi(X)

for i even and less than 2d. This shows that the classes corresponding to the
affine spaces give a basis for H∗(X).

Now assume the result is true for spaces with a filtration X = Xm−1 ⊃ · · · ⊃
X0 = ∅, and let X have a filtration X = Xm ⊃ · · · ⊃ X0 = ∅. Then the result
holds for closed subset Z := Xm−1 and open subset U := X −Xm−1, the latter
of which is a union of affine spaces. Once again we have an exact sequence

· · · → Hi+1(U) → Hi(Z) → Hi(X) → Hi(U) → Hi−1(Z) → . . .

Now, Hi(Z) = 0 = Hi(U) for i odd, so Hi(X) = 0 as well. For i even, i − 1
and i+ 1 are odd, so we have a short exact sequence of vector spaces, implying
Hi(X) ∼= Hi(Z)⊕Hi(U). In particular, the bases for H∗(Z) and H∗(U) combine
to give us a basis for H∗(X) as desired.
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Problem 5

Use Problem 4 to do these computations.

(1) Compute the singular cohomology of CPn.

(2) Let G be a complex semisimple algebraic group and let B be a Borel sub-
group. Compute the singular cohomology of G/B.

Proof. (1) We have a filtrationXj = CPj−1 for 0 < j ≤ n+1 withXj−Xj−1 =∼=
Aj−1. Each Aj−1 is dense in Xj , so Aj−1 = Xj . Thus, the [Xj ] form a basis
for HBM

∗ (CPn), with [Xj ] ∈ HBM
2(j−1)(CP

n). By Poincaré duality, the singular
cohomology will also have 1 generator in each even degree, given by the duals
to the classes [Xj ].

(2) By the Bialynicki Birula decomposition, and by a previous homework prob-
lem (essentially the Bruhat decomposition, but we need the affine part), we
know that G/B is a finite disjoint union of affine spaces. Explicitly, the affine
spaces are the B orbits of the coset wB for w ∈ WT for a maximal torus T ⊂ B.
These spaces have dimension given by the length of w. The closure of B(wB)
is the union of B(w′B) for w′ ≤ w in the Bruhat order. By Problem 4, the
classes of these closures give us a basis for the Borel Moore homology of G/B.
By duality, the duals of these classes give us a basis for the singular cohomology
of G/B.

5


