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Problem 1

Let A ∈ sln(C) be the regular nilpotent matrix defined by Ai,j = 1 if j = i+ 1
and Ai,j = 0 otherwise. Show directly that the standard flag is the only complete
flag preserved by A.

Proof. Fix a basis {ei} for Cn. Suppose A preserves the flag

0 ⊂ ⟨v1⟩ ⊂ ⟨v1, v2⟩ ⊂ · · · ⊂ ⟨v1, . . . , vn⟩ = Cn.

Since A is nilpotent, preserving the flag means AVi ⊂ Vi−1. In particular,
Av1 = 0. Since kerA = ⟨e1⟩, we have without loss of generality v1 = e1.
Assume by induction (and without loss of generality) that vi = ei for i < j,
for some j ∈ {2, . . . , n − 1}. We have Avj ∈ ⟨e1, . . . , ej−1⟩. In particular, the
ek component of Avj for k ∈ {j, . . . , n − 1} is 0. Since the ek component of
Avj is the ek+1 component of vj , this implies that vj ∈ ⟨e1, . . . , ej⟩. Since vj is
linearly independent from e1, . . . , ej−1, we can vj = ej without loss of generality.
Finally, if vi = ei for i < n, then since vn is linearly independent from the ei,
we can take it to be en without loss of generality. Thus, our flag is the standard
flag.
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Problem 2

Consider G = Sp(V ), V = ⟨v1, v2, v3, v4⟩ with the symplectic form given by
⟨vi, v5−i⟩ = 1 if i = 1, 2 and ⟨vi, vj⟩ = 0 for i + j ̸= 5. Let e : v4 7→ v1 7→
0, v2 7→ 0, v3 7→ 0. Then any flag 0 ⊂ V1 ⊂ V2 ⊂ V ⊥

1 ⊂ V in Be must
satisfy ⟨v1⟩ ⊂ V2 ⊂ ⟨v1, v2, v3⟩. Moreover, this is the only condition for a flag
0 ⊂ V1 ⊂ V2 ⊂ V ⊥

1 ⊂ V to lie in Be.

Proof. From Yun’s notes, for a flag 0 ⊂ V1 ⊂ V2 ⊂ V ⊥
1 ⊂ V to lie in Be, we must

have V2 = V ⊥
2 and eVi ⊂ Vi−1, where V0 = 0, V3 = V ⊥

1 , and V4 = V . Therefore,
we must show that these conditions are equivalent to ⟨v1⟩ ⊂ V2 ⊂ ⟨v1, v2, v3⟩.

Suppose ⟨v1⟩ ⊂ V2 ⊂ ⟨v1, v2, v3⟩. Since ⟨v1, v2, v3⟩ = ker e, we have eV2 = 0 ⊂
V1. If eV1 ̸= 0, then V1 must contain some element with a non-zero v4 compo-
nent. But V1 ⊂ V2 ⊂ ⟨v1, v2, v3⟩, and the latter space contains no such vectors,
a contradiction. Thus, eV1 = 0. Since ime = ⟨v1⟩, we have that eV3 ⊂ ⟨v1⟩ ⊂ V2

and eV4 ⊂ ⟨v1⟩ ⊂ V2 ⊂ V3. Thus, e preserves the flag.

It remains to show that V2 = V ⊥
2 . Since v1 ∈ V2 and V2 ⊂ ⟨v1, v2, v3⟩, we can

take V1 = ⟨v1, av2 + bv3⟩ where a, b are constants and not both 0. By direct
computation, we can show

⟨cv1 + adv2 + bdv3, ev1 + afv2 + bfv3⟩ = abdf − abdf = 0,

for all constants c, d, e, f . Thus V2 ⊂ V ⊥
2 . Now let w ∈ V ⊥

2 and write
w =

∑
i w

ivi. Since ⟨v1, w⟩ = w4 and v1 ∈ V2, we must have w4 = 0. Expanding
the relation ⟨w, cv1 + adv2 + bdv3⟩ = 0 for all c, d, we have bdw3 = adw2 for all
c, d. Taking d = 1, we get bw3 = aw2. Since a, b are not both 0, this implies
that w2v2 + w3v3 is a multiple of av2 + bv3. Thus w ∈ V2, which shows that
V ⊥
2 ⊂ V2. Thus, V2 = V ⊥

2 . This concludes one direction of the proof.

Now suppose that eVi ⊂ Vi−1 and V2 = V ⊥
2 . Since eV1 = 0, we have V1 ⊂

⟨v1, v2, v3⟩. If V2 ̸⊂ ⟨v1, v2, v3⟩, say w ∈ V2 has a non-zero v4 component w4,
then w4v1 = ew ∈ eV2 ⊂ V1, so V1 = ⟨v1⟩. But V2 ⊂ V ⊥

1 implies w ∈ V ⊥
1 ,

and ⟨v1, w⟩ = w4 ̸= 0, a contradiction. Thus V2 ⊂ ⟨v1, v2, v3⟩. Finally, v1 ∈
⟨v1, v2, v3⟩⊥ ⊂ V ⊥

2 = V2, so ⟨v1⟩ ⊂ V2. Thus, ⟨v1⟩ ⊂ V2 ⊂ ⟨v1, v2, v3⟩.
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Problem 3

Let g be a semisimple Lie algebra over C and let b be a Borel subalgebra of g.
Let x ∈ b. Show that x is nilpotent in g if and only if x ∈ n.

Proof. Fix a Cartan subalgebra h ⊂ b, as well as a root system and a base of
simple roots. Then n =

⊕
α>0 gα and b = h+ n.

To show that x ∈ n is nilpotent, it suffices by linearity to show that for any
α > 0, x ∈ gα is nilpotent. This follows from the fact that [gα, gβ ] ⊆ gα+β .
In particular, (adx)n : gβ → gβ+nα, and the set of roots is finite, so for large
enough n, we will have (adx)n : gβ → 0 for all β. Since g =

⊕
α gα, we have

(adx)n = 0, so x is nilpotent.

Now suppose arbitrary x ∈ b is nilpotent. It admits a decomposition x = h+n,
where h ∈ h and n ∈ n. As we have already shown, n is nilpotent. Thus,
h = x−n is nilpotent. If (adh)n = 0, then for any y ∈ gα, we have α(h)ny = 0.
Thus α(h) = 0 for all roots α, which means that h = 0. Thus x = n is in n.
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Problem 4

Let g be a semisimple Lie algebra over C and let b be a Borel subalgebra of g.
Let x ∈ b be a regular semisimple element. Show that x + n is equal to B · x.
Now deduce that for any G-invariant polynomial P on g, the restriction of P to
y + n is constant for any y ∈ b.

Proof. Since x is semisimple and regular, its centralizer in g is a Cartan subal-
gebra, which we can identify with the Lie algebra of a maximal torus T . Then
write B = UT . We have B ·x = UT ·x = U ·x. Furthermore, the stabilizer of U
acting on x is exactly U ∩ T = {id}, so dim(U · x) = dim(U). Since n is the Lie
algebra of U , we have dim(U) = dim(n) = dim(x + n). A general result states
orbits under unipotent group actions are closed, so U · x is closed. Finally, it
suffices to show that x+ n is U -stable. U acts trivially on B/U , so it also acts
trivially on the Lie algebra of B/U , which is b/n. In particular, it sends x + n
to x+ n. Thus, U · x ⊂ x+ n. Since U · x is closed and of the same dimension
as x+ n, we have U · x = x+ n.

If y ∈ b is regular and semisimple, then by the first part, P |y+n = P |B·y = P (y).
If y is not regular semisimple, then since semisimple regular elements are dense,
we can approximate y by semisimple regular elements and use continuity of
polynomials to conclude P |y+n is constant.
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Problem 5

Let X be a variety over C.

a. Recall the following fact from algebraic geometry: the smooth locus Xsm is
open and dense in X. Now show that Xsm intersects each irreducible compo-
nent of X.

b. Show that X is equidimensional if and only if for every non-empty open
subset U ⊂ X, we have dim(U) = dim(X).

Proof. a. It is more generally true that any dense subset A of X intersects
each irreducible component of X. Let the irreducible components of X be
X1, . . . , Xm. They are all closed subsets ofX. Then A ∩Xi ⊂ Xi, andX = A =
m⋃
i=1

A ∩Xi. Suppose some A ∩Xj = ∅, so that Xj ⊂ X =
⋃
i ̸=j

A ∩Xi ⊂
⋃
i̸=j

Xi.

Then Xj =
⋃
i ̸=j

Xi ∩Xj . Each Xi ∩Xj is a closed subset, and Xj is irreducible,

so there is some i ̸= j such that Xj = Xi ∩ Xj . This means Xj ⊂ Xi, which
contradicts Xj being an irreducible component.

b. If dim(U) = dim(X) for all non-empty opens U , then take U = X −
⋃
i̸=j

Xi.

This is a non-empty open subset of Xj , so it is dense in Xj , so it has dimen-
sion dim(Xj). This shows dim(Xj) = dim(X) for all j, so X is equidimensional.

Now suppose X is equidimensional. A general fact about dimension is that
Y ⊆ Z implies dim(Y ) ≤ dim(Z). Thus dim(U) ≤ dim(X). Now, U must
intersect some irreducible component Xi. Then U ∩ Xi is a non-empty open
subset of the irreducible space Xi, meaning dim(U ∩Xi) = dim(Xi). Since X is
equidimensional, this gives dim(U ∩Xi) = dim(X). Since U ∩Xi ⊆ U , we have
dim(U ∩Xi) ≤ dim(U), so dim(X) ≤ dim(U). Thus, dim(U) = dim(X).
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