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1 Problem 1

Find the regular elements in sln(C) up to conjugacy.

Proof. We claim that the regular elements X ∈ sln(C) are exactly those ele-
ments whose Jordan Normal Form (JNF) does not contain two blocks with the
same eigenvalue.

Since a matrix is determined up to conjugacy by its JNF, we will simply work
with the JNFs directly. Suppose X is a direct sum of k Jordan blocks Λi with
size li and eigenvalue λi. Given an n × n matrix A, write it in corresponding
k × k block form, with the li × lj submatrix of A at block position (i, j) being
denoted Aij . Since X is block diagonal, it is clear to see that AX = XA if and
only if AijΛj = ΛiAij for all (i, j).

We now drop the i, j and suppose that Λ,Λ′ are Jordan blocks of size p and
q respectively and with eigenvalues λ and λ′ respectively. Also suppose A is a
p × q matrix satisfying ΛA = AΛ′. Write Λ = λIp + N and Λ′ = λ′Iq + N ′.
Explicitly, the N and N ′ matrices have 0’s everywhere except the elements
above the diagonal. Then ΛA = λA + NA and AΛ′ = λ′A + AN ′. Therefore,
our equation may be written as

(λ− λ′)A = NA−AN ′. (1)

We now analyze what form A has in the two cases where λ = λ′ and λ ̸= λ′.

First consider the case where λ = λ′. Then we just have NA = AN ′. Letting
the (i, j) entry of A be ai,j , and comparing the (i, j) entries of NA and AN ′,
we get

ai+1,j = ai,j−1, (2)

where it is understood that if i = p the left hand side vanishes, and if j = 1 the
right hand side vanishes. It is annoying to describe exactly the form of matrices
satisfying this condition, but there are two important observations that suffice
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for us:

Observation 1. If p = q, then A is upper triangular and each diagonal contains
the same elements (succinctly, an upper triangular Toeplitz matrix).

Observation 2. Regardless of the relationship of p and q, there is at least one
non-zero matrix A satisfying Equation (2), namely the matrix with 0’s every-
where but the (1, q) entry (and that entry can be any non-zero number).

We can now identify a dimension n− 1 subspace of the centralizer of X. Con-
sider matrices A in sln(C) written in block form corresponding to the JNF of
X. In order for AX = XA, it is necessary that the diagonal blocks of A must
be upper triangular Toeplitz matrices (by the above case, seeing as λi = λi).
Consider only such A that are block diagonal. Certainly, such an A commutes
with X, since all of the equations ΛiAij = AijΛj are true for i ̸= j since Aij = 0,
and for i = j it is true by our work above (observation 1). In each diagonal
block of A, we have li independent variables. However, in order for A to be in
sln(C), we must have one linear condition on the diagonal elements. Therefore,
the set of block diagonal A, where each block on the diagonal is upper triangular
Toeplitz, has dimension n − 1. As we have already mentioned, each of these
matrices commute with X, so this is a subspace of Zg(X).

Recall that X is regular if and only if dimZg(X) = rankg. The rank of sln(C)
is n− 1. Thus, we see that X is regular if and only if the only elements which
commute with X are exactly those described above. By our observation 2, if
some λi = λj for i ̸= j, then Aij can be made non-zero, meaning there is some
non-block diagonal matrix in Zg(X), so that X is not regular. In other words,
if X has repeated eigenvalues in its JNF, it cannot be regular.

It remains to prove the converse; if X has distinct eigenvalues in its JNF, then
it is regular. As we already showed, the block diagonal matrices whose diagonal
blocks are upper triangular Toeplitz comprise an n− 1 dimensional subspace of
the centralizer of X. Therefore, it suffices to show that if i ̸= j, λi ̸= λj), and
ΛiAij = AijΛj , then Aij = 0.

Once again, we ditch i, j and return to Equation (1) and its notations. Further-
more, we won’t really need λ and λ′; we only need the fact that λ− λ′ ̸= 0. To
that end, set b = λ − λ′. Equating the (i, j) entries on both sides of Equation
(1) gives:

bai,j = ai+1,j − ai,j−1. (3)

Once again, we understand that if j = 1, the term ai,j−1 is 0, and if i = p, then
ai+1,j = 0. This gives us two convenient equations:

bai,1 = ai+1,1, (4)

bap,j = −ap,j−1. (5)
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In particular, we have bap,1 = 0, so ap,1 = 0. Then Equation (4) gives bap−1,1 =
0 and Equation (5) gives bap,2 = 0. It is clear to see by induction that the
left most column and bottom most row of A must vanish in this way. Then
Equations (3), (4), and (5) simply restrict to constraints on the top-right (p −
1)× (q− 1) submatrix of A. By induction, we conclude A = 0, as desired. This
finishes the proof.
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2 Problem 2

Let G be a complex semisimple algebraic group and let g be its Lie algebra. Let
κ : g× g → C be the Killing form.

a. Let h be a Cartan subalgebra of g. Show that the restriction of κ to h× h is
non-degenerate.

b. Let B be a Borel subgroup of G with Lie algebra b and let n be its nilradical.
Show that under the isomorphism g ∼= g∗ induced by the Killing form, n gets
B-equivariantly identified with b⊥.

Proof. a. Given h, we have a root system and a corresponding decomposition
g = h

⊕
α∈Φ gα. We can also write h = g0.

We now show that if α, β ∈ Φ ∪ {0} with α + β ̸= 0, then κ(gα, gβ) = 0.
Let h ∈ h be such that (α + β)(h) ̸= 0. Let x ∈ gα, y ∈ gβ . We have
κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y]), with the second equality due to “as-
sociativity” of the Killing form. Since [h, x] = α(h)x and [h, y] = β(h)y, this
equation reads α(h)κ(x, y) = −β(h)κ(x, y), or (α + β)(h)κ(x, y) = 0. Thus
κ(x, y) = 0 as desired.

As a consequence, h is κ-orthogonal to every root space. If some h ∈ h satisfied
κ(h, h) = 0, then we would have κ(h, g) = 0. But κ is non-degenerate since g is
semisimple, so h = 0. Thus, κ is non-degenerate on h× h.

b. Let h be a Cartan subalgebra contained in b. Pick a corresponding root
system, as well as simple roots so that we have a partition Φ = Φ− ∐

Φ+.
Then we have b = h

⊕
α∈Φ+ gα and n = [b, b] =

⊕
α∈Φ+ gα. Since g =⊕

α∈Φ− gα ⊕ h ⊕
⊕

α∈Φ+ gα, dim gα = 1 for α ∈ Φ, and |Φ−| = |Φ+|, we
have dim n = |Φ+| = |Φ−| = dim

⊕
α∈Φ− gα = dim g − dim b. Since we also

have dim b⊥ = dim g− dim b, it follows that dim n = dim b⊥.

Now we show that n is mapped to b⊥ under x 7→ κ(x,−). By linearity, it suffices
to take x ∈ gα for α ∈ Φ+. If β ∈ Φ+ ∪ {0}, then α+ β ̸= 0, so κ(x, gβ) = 0 by
the result in part a. Since b is the direct sum of such gβ , we have κ(x, b) = 0.
Since κ is non-degenerate, this mapping n → b⊥ is injective. An injective linear
map between vector spaces of the same (finite) dimension is an isomorphism, so
n and b⊥ are identified.

Now we show that this identification is B-equivariant. For x ∈ n and b ∈
B, we have Ad(b)x is mapped to κ(Ad(b)x,−). Since κ is invariant under
automorphisms of g, we have κ(Ad(b)x,−) = κ(x,−) ◦ Ad(b)−1 = κ(x,−) ◦
Ad(b−1). By definition of the coadjoint action of B on g∗, we have κ(x,−) ◦
Ad(b−1) = Ad∗(b)κ(x,−). Thus, the identification is B-equivariant.
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3 Problem 3

Let g be a semisimple Lie algebra over C. Let X ∈ g be a nilpotent element.
Show that for any λ ∈ C×, λX is nilpotent.

Proof. Note that ad(λX) = λad(X), so if ad(x)n = 0, then ad(λX)n = 0.

4 Problem 4

Let B denote the flag variety of a semisimple algebraic group G over C. View B
as G/B for a Borel subgroup B of G and let T ⊂ B be a maximal torus in G.
Show that for every regular cocharacter λ : Gm → T , we have BT = Bλ(Gm).

Proof. Since λ(Gm) ⊆ T , we have BT ⊆ Bλ(Gm). Thus, it suffices to show the
opposite containment.

First, we show that Bλ(Gm) is T -stable. Suppose gB ∈ Bλ(Gm), so that λ(a)gB =
gB for all a ∈ Gm. Then for t ∈ T , we have tλ(a)gB = tgB for all a ∈ Gm.
Since T is abelian, tλ(a) = λ(a)t, so we get λ(a)tgB = tgB for all a ∈ Gm, i.e.
tgB ∈ Bλ(Gm). Thus, Bλ(Gm) is T -stable.

Now we show that Bλ(Gm) is finite. By Bialynicki-Birula decomposition, we
know that Bλ(Gm) is a smooth variety, so its connected components are its ir-
reducible components, and there are finitely many of them, since a variety is
Noetherian. Call the connected components Zi. For z ∈ Zi, we know that
dim(Zi) = dim((TzB)0), where (TzB)0 is the subspace of TzB where Gm acts
trivially. Identifying B with G/B for some Borel subgroup B, let z = gB. Then
we can identify TgB(B) with g/(Ad(g)b). This quotient will be a sum of some
root spaces, since the Borel subalgebra will cancel out a Cartan subalgebra of g.
Since λ is regular, it does not fix any roots. This shows (Tz(B))0 = 0 for z ∈ Zi,
so dim(Zi) = 0. An irreducible space of dimension 0 is a point, so Bλ(Gm) is a
finite union of points.

Finally, since T is connected, its continuous action on a finite set of disconnected
points must be trivial. Thus, every point in Bλ(Gm) is in BT , as desired.
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5 Problem 5

Let G be a linear algebraic group over C acting on an affine variety X over
C. Let C[X] denote the ring of regular functions on X. Then G acts on C[X]
in the usual way. Show that every non-zero f ∈ C[X] is contained in a finite-
dimensional G-invariant subspace of C[X].

Proof. Corresponding to the action map ϕ : G×X → X, let ϕ∗ be the map on
coordinate rings C[X] → C[G×X]. It is well known that the product of affine
varieties has coordinate ring isomorphic to the tensor product of the constituent
coordinate rings. In less words, we have C[G × X] ∼= C[G] ⊗ C[X]. Thus, we
can identify ϕ∗ with a map ϕ∗ : C[X] → C[G]⊗ C[X].

Now, let ϕ∗f =
∑n

i=1 ai⊗bi ∈ C[G]⊗C[X]. Explicitly, this means that for g ∈ G,
we have (gf)(x) = f(g−1x) =

∑
ai(g

−1)bi(x). It follows that gf =
∑

ai(g
−1)bi

is in the span of the bi, which is finite dimensional. Then the span of the G-orbit
of f is also finite dimensional, and G-invariant.
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