MATH 7290 Homework 2

Andrea Bourque

December 15, 2023

1 Problem 1

Find the regular elements in sl,,(C) up to conjugacy.

Proof. We claim that the regular elements X € sl,(C) are exactly those ele-
ments whose Jordan Normal Form (JNF) does not contain two blocks with the
same eigenvalue.

Since a matrix is determined up to conjugacy by its JNF, we will simply work
with the JNFs directly. Suppose X is a direct sum of k& Jordan blocks A; with
size [; and eigenvalue \;. Given an n X n matrix A, write it in corresponding
k x k block form, with the [; x [; submatrix of A at block position (7,j) being
denoted A;;. Since X is block diagonal, it is clear to see that AX = X A if and
Only if AijAj = AiAij for all (Z,j)

We now drop the 7,5 and suppose that A, A’ are Jordan blocks of size p and
g respectively and with eigenvalues A and )\ respectively. Also suppose A is a
p X ¢ matrix satisfying AA = AA'. Write A = A\, + N and A" = NI, + N".
Explicitly, the N and N’ matrices have 0’s everywhere except the elements
above the diagonal. Then AA = AA + NA and AN = NA + AN’. Therefore,
our equation may be written as

(A=XN)A=NA- AN'. (1)
We now analyze what form A has in the two cases where A = A" and A # \.

First consider the case where A = A’. Then we just have NA = AN’. Letting
the (4, ) entry of A be a; ;, and comparing the (4, j) entries of NA and AN’,
we get

Qi41,5 = A4 51, (2)

where it is understood that if ¢ = p the left hand side vanishes, and if j = 1 the
right hand side vanishes. It is annoying to describe exactly the form of matrices
satisfying this condition, but there are two important observations that suffice



for us:

Observation 1. If p = ¢, then A is upper triangular and each diagonal contains
the same elements (succinctly, an upper triangular Toeplitz matrix).

Observation 2. Regardless of the relationship of p and ¢, there is at least one
non-zero matrix A satisfying Equation (2), namely the matrix with 0’s every-
where but the (1,¢) entry (and that entry can be any non-zero number).

We can now identify a dimension n — 1 subspace of the centralizer of X. Con-
sider matrices A in sl,(C) written in block form corresponding to the JNF of
X. In order for AX = XA, it is necessary that the diagonal blocks of A must
be upper triangular Toeplitz matrices (by the above case, seeing as A; = A;).
Consider only such A that are block diagonal. Certainly, such an A commutes
with X, since all of the equations A;A;; = A;;A; are true for ¢ # j since A;; = 0,
and for ¢ = j it is true by our work above (observation 1). In each diagonal
block of A, we have [; independent variables. However, in order for A to be in
50, (C), we must have one linear condition on the diagonal elements. Therefore,
the set of block diagonal A, where each block on the diagonal is upper triangular
Toeplitz, has dimension n — 1. As we have already mentioned, each of these
matrices commute with X, so this is a subspace of Z(X).

Recall that X is regular if and only if dim Z4(X) = rankg. The rank of sl,(C)
is n — 1. Thus, we see that X is regular if and only if the only elements which
commute with X are exactly those described above. By our observation 2, if
some \; = \; for ¢ # j, then A;; can be made non-zero, meaning there is some
non-block diagonal matrix in Z4(X), so that X is not regular. In other words,
if X has repeated eigenvalues in its JNF, it cannot be regular.

It remains to prove the converse; if X has distinct eigenvalues in its JNF, then
it is regular. As we already showed, the block diagonal matrices whose diagonal
blocks are upper triangular Toeplitz comprise an n — 1 dimensional subspace of
the centralizer of X. Therefore, it suffices to show that if ¢ # j, A; # A;), and
AZAU == AijAj7 then AU =0.

Once again, we ditch 4, j and return to Equation (1) and its notations. Further-

more, we won’t really need A and \'; we only need the fact that A — X # 0. To

that end, set b = A — X. Equating the (i, j) entries on both sides of Equation

(1) gives:

baij = Giv1,5 — G451 (3)

Once again, we understand that if j = 1, the term a; ;1 is 0, and if # = p, then
ai+1,; = 0. This gives us two convenient equations:

ba;1 = a;y1,1, (4)

bap,; = —ap,j-1. (5)



In particular, we have ba, 1 = 0, so a, 1 = 0. Then Equation (4) gives ba,—11 =
0 and Equation (5) gives bap2 = 0. It is clear to see by induction that the
left most column and bottom most row of A must vanish in this way. Then
Equations (3), (4), and (5) simply restrict to constraints on the top-right (p —
1) X (¢ — 1) submatrix of A. By induction, we conclude A = 0, as desired. This

finishes the proof.
O



2 Problem 2

Let G be a complex semisimple algebraic group and let g be its Lie algebra. Let
k: g x g — C be the Killing form.

a. Let h be a Cartan subalgebra of g. Show that the restriction of x to h x § is
non-degenerate.

b. Let B be a Borel subgroup of G with Lie algebra b and let n be its nilradical.
Show that under the isomorphism g & g* induced by the Killing form, n gets
B-equivariantly identified with b=.

Proof. a. Given b, we have a root system and a corresponding decomposition
0 =b@D,co 9o We can also write h = go.

We now show that if o, € ® U {0} with o + 8 # 0, then k(ga,95) = 0.
Let h € b be such that (o + B)(h) # 0. Let € go,y € g3. We have
k([h,z],y) = —k([z, h],y) = —k(x, [h,y]), with the second equality due to “as-
sociativity” of the Killing form. Since [h,z] = a(h)z and [h,y] = B(h)y, this
equation reads a(h)k(z,y) = —B(h)k(z,y), or (o + B)(h)k(z,y) = 0. Thus
k(z,y) = 0 as desired.

As a consequence, b is k-orthogonal to every root space. If some h € h satisfied
k(h,h) = 0, then we would have k(h,g) = 0. But  is non-degenerate since g is
semisimple, so h = 0. Thus, x is non-degenerate on h x b.

b. Let h be a Cartan subalgebra contained in b. Pick a corresponding root
system, as well as simple roots so that we have a partition ® = &~ [[®™.
Then we have b = h@, cp+ 9o and n = [b,b] = P, cp+ Jo- Since g =
Doco 9o DH D P cgs da, dimg, = 1 for o € @, and 7] = [®F], we
have dimn = [®F] = [®7| = dim P cp- §o = dimg — dimb. Since we also
have dim b = dim g — dim b, it follows that dimn = dim b*.

Now we show that n is mapped to b under z + x(x, —). By linearity, it suffices
to take x € g, for a € @, If B € T U {0}, then o+ 3 # 0, so k(z,gg) = 0 by
the result in part a. Since b is the direct sum of such gg, we have x(x,b) = 0.
Since  is non-degenerate, this mapping n — b* is injective. An injective linear
map between vector spaces of the same (finite) dimension is an isomorphism, so
n and bt are identified.

Now we show that this identification is B-equivariant. For x € n and b €
B, we have Ad(b)z is mapped to x(Ad(b)x,—). Since s is invariant under
automorphisms of g, we have x(Ad(b)z,—) = r(z,—) o Ad(b)~! = k(x,—) o
Ad(b~1). By definition of the coadjoint action of B on g*, we have s(x,—) o
Ad(b~1) = Ad*(b)k(x, —). Thus, the identification is B-equivariant. O



3 Problem 3

Let g be a semisimple Lie algebra over C. Let X € g be a nilpotent element.
Show that for any A € C*, AX is nilpotent.

Proof. Note that ad(AX) = Aad(X), so if ad(z)™ =0, then ad(AX)*=0. O

4 Problem 4

Let B denote the flag variety of a semisimple algebraic group G over C. View B
as G/B for a Borel subgroup B of G and let T C B be a maximal torus in G.
Show that for every regular cocharacter \ : G,, — T, we have BT = B Cm),

Proof. Since \(G,,) C T, we have BT C B*CGm)  Thus, it suffices to show the
opposite containment.

First, we show that B)®m) is T-stable. Suppose gB € BM®m) so that \(a)gB =
gB for all a € G,,. Then for t € T, we have tA(a)gB = tgB for all a € G,y,.
Since T is abelian, tA(a) = A(a)t, so we get A(a)tgB = tgB for all a € G,,, i.e.
tgB € BNGm) Thus, BMGm) is T-stable.

Now we show that B)®m) is finite. By Bialynicki-Birula decomposition, we
know that BM®) is a smooth variety, so its connected components are its ir-
reducible components, and there are finitely many of them, since a variety is
Noetherian. Call the connected components Z;. For z € Z;, we know that
dim(Z;) = dim((7.B)°), where (T.B)° is the subspace of T,B where G,, acts
trivially. Identifying B with G/B for some Borel subgroup B, let z = gB. Then
we can identify T,z (B) with g/(Ad(g)b). This quotient will be a sum of some
root spaces, since the Borel subalgebra will cancel out a Cartan subalgebra of g.
Since A is regular, it does not fix any roots. This shows (T, (B))? = 0 for z € Z;,
so dim(Z;) = 0. An irreducible space of dimension 0 is a point, so B is a
finite union of points.

Finally, since T is connected, its continuous action on a finite set of disconnected
points must be trivial. Thus, every point in BM®m) is in BT as desired. O



5 Problem 5

Let G be a linear algebraic group over C acting on an affine variety X over
C. Let C[X] denote the ring of regular functions on X. Then G acts on C[X]
in the usual way. Show that every non-zero f € C[X] is contained in a finite-
dimensional G-invariant subspace of C[X].

Proof. Corresponding to the action map ¢ : G x X — X, let ¢* be the map on
coordinate rings C[X] — C[G x X]. It is well known that the product of affine
varieties has coordinate ring isomorphic to the tensor product of the constituent
coordinate rings. In less words, we have C[G x X] = C[G] ® C[X]. Thus, we
can identify ¢* with a map ¢* : C[X] — C[G] ® C[X].

Now, let ¢* f = 31" | a;®b; € C[G]®C[X]. Explicitly, this means that for g € G,
we have (gf)(z) = f(g7 @) = Y. a; (g7 )bi(x). It follows that gf = > a;(g71)b;
is in the span of the b;, which is finite dimensional. Then the span of the G-orbit
of f is also finite dimensional, and G-invariant. O



