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1 Problem 1

Let λ be a partition of n viewed as a Young diagram.

(a) Show that ResSn

Sn−1
Vλ is the direct sum of Vµ’s, where µ runs over all Young

diagrams obtained by removing a box from λ.

Proof. Note: this proof is essentially from Bruce Sagan’s book on symmetric
groups, with more details as necessary.

First we show that the boxes of the Young diagram λ which can be removed to
obtain a new Young diagram are exactly those where the label n can be placed
in a standard Young tableaux of shape λ. Indeed, a standard tableaux has in-
creasing rows and columns, so the n must be in a box with nothing to the right
or below. Any box with something to the right or below cannot be removed to
make a Young diagram, because there will be a “hole” in the diagram. However,
the boxes with nothing to the right are below can be removed with no problem.

This result implies that the number of standard λ-tableaux equals the sum of
the number of standard µ-tableaux, with the sum ranging over µ obtained from
removing a box from λ. Recall that the dimension of Vλ is the number of stan-
dard λ-tableaux, so this result implies that dimVλ =

∑
µ Vµ.

Let r1, ..., rk be the rows of λ which have a box that can be removed. For each
i = 1, ..., k, let λi be the partition obtained from removing the box at the end
of row ri. Furthermore, if λ-tableau has n in row ri, let ti be the corresponding
λi-tableau obtained by removing the box containing n. Now, for a subspace
W ⊂ V , we have V = W ⊕ (V/W ). Thus, to show that ResVλ = ⊕iVλi , it
suffices to find a chain of subspaces

0 = V 0 ⊂ ... ⊂ V k = Vλ

such that V i/V i−1 ∼= Vλi as Sn−1 modules. To that end, we define V i as the
span of the polytabloids et, where t is a standard λ-tableau with the n in some
row r1, ..., ri. We note that V k = Vλ because any standard tableau must have n
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in one of the rows r1, ..., rk, so we have all the polytabloids needed to span Vλ.

Let Uλ be the permutation module, i.e. the span of λ-tabloids. Let θi : Uλ →
Uλi be a linear map defined by θi({t}) = {ti} if n is in row ri of t, and θi({t}) = 0
otherwise. Since the map is defined in terms of where the n is in t, this is clearly
a map of Sn−1-modules, where we are saying Sn−1 sits in Sn as the stabilizer
of n ∈ {1, ..., n}.

If t is a standard λ-tableau with n in row rj , then any tabloid appearing in the
expansion of et, i.e. one obtained by applying permuting the columns, will have
the n in a row rk with k ≤ j. This is because the n in t has nothing below
it, so permuting the column cannot decrease the row position of the n. Then,
for such t, we have θi(et) = eti if i = j and θi(et) = 0 if j < i. As a result,
θi(V

i) = Sλi and V i−1 ⊂ ker θi. Then we have a chain

0 = V 0 ⊂ V 1 ∩ ker θ1 ⊂ V1 ⊂ ... ⊂ V k = Vλ.

By isomorphism theorem, dim
(
V i/V i ∩ ker θi

)
= dim θiV

i = dimVλi . We
noticed earlier that dimVλ =

∑
i Vλi , which means that the quotients V i ∩

ker θi/V
i−1 are 0-dimensional, i.e. that V i−1 = V i∩ker θi. Thus V i/V i−1 ∼= Vλi

as desired.

(b) Show that Ind
Sn+1

Sn
Vλ is the direct sum of Vν ’s, where ν runs over all Young

diagrams obtained by adding a box to λ.

Proof. Note that ν is obtained by adding a box to λ if and only if λ is ob-
tained by removing a box from ν. From part (a) and Frobenius reciprocity, i.e.
dimHom(IndVλ, Vν) = dimHom(Vλ,ResVν), we get the desired result.
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2 Problem 3

Let λ be a partition of n, and let Vλ be the corresponding irrep of Sn.

(a) Given complex numbers a1, ..., aN , show that

det

(
N−i∏
k=1

(aj − k)

)
=

∏
1≤i<j≤N

(ai − aj).

Proof. Note that this determinant, call it D, is divisible by ∆ =
∏

1≤i<j≤N (ai−
aj), since ∆ = 0 exactly when some ai = aj , in which case the matrix has two
identical columns and thus 0 determinant. The degree of ∆ is N(N −1)/2. The
highest degree which appears in the expansion of D is N(N − 1)/2, as one can
see by multiplying the diagonal elements. Thus D = c∆ for some constant c. To
determine c, let ai = N + 1− i for all i. The matrix becomes lower triangular,
so that

D =

N∏
i=1

N−i∏
k=1

(N + 1− i− k) =

N∏
i=1

(N − i)! =

N−1∏
i=1

(N − i)!.

On the other hand, for these values of ai we have

∆ =
∏

1≤i<j≤N

(j − i) =

N−1∏
i=1

N∏
j=i+1

(j − i) =

N−1∏
i=1

N−i∏
j−i=1

(j − i) =

N−1∏
i=1

(N − i)!.

Since D = ∆ ̸= 0 for this choice of ai, and D = c∆ for some fixed constant in
general, it must be that D = ∆ for all ai.

(b) Let N be an integer at least as large as the number of parts of λ, and set
ℓj = λj +N − j. Apply the Frobenius character formula to show that

dimVλ =
n!∏
j ℓj !

∏
1≤i<j≤N

(ℓi − ℓj).

Proof. The following proof is adapted from Fulton and Harris. Recall that the
dimension of a representation is exactly its character evaluated at the trivial
conjugacy class. The trivial conjugacy class in Sn corresponds to the partition
(1,...,1), which has i = (n, 0, ..., 0). Thus we want the coefficient of xℓ (abbrevi-
ated monomial) in (x1+...+xN )n

∏
1≤i<j≤N (xi−xj). But

∏
1≤i<j≤N (xi−xj) is

the Vandermonde determinant, so it is equal to
∑

σ∈SN
(−1)σx

σ(1)−1
N · · ·xσ(N)−1

1 .
On the other hand, we have the multinomial expansion (x1 + ... + xN )n =∑

n!∏
rj !

xr, with the sum over (r1, ..., rN ) ∈ ZN
≤0 with

∑
rj = n. To get xl, we

must then pair a term from the σ sum with a term from the multinomial sum
such that rj+σ(N−j+1)−1 = ℓj . Note that this requires σ(N−j+1)−1 ≤ ℓj ,
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which is a restraint we put on σ for the following sum. Then we get

dimVλ =
∑
σ

(−1)σ
n!∏

j(ℓj − σ(N − j + 1) + 1)!

=
n!∏
j ℓj !

∑
σ

(−1)σ
∏
j

ℓj(ℓj − 1) · · · (ℓj − σ(N − j + 1) + 2).

This sum is the determinant of the matrix in part (a) with ai = ℓi + 1, so we
have

dimVλ =
n!∏
j ℓj !

∏
1≤i<j≤N

(ℓi − ℓj)

as desired.

(c) Show that

dimVλ =
n!∏

hook lengths
,

where the product is over all boxes in the Young diagram for λ.

Proof. From part (b), it suffices to show that∏
hook lengths =

∏
j ℓj !∏

1≤i<j≤N (ℓi − ℓj)
.

But ∏
j ℓj !∏

1≤i<j≤N (ℓi − ℓj)
=

∏
1≤i≤N

ℓi!∏
i<j≤N (ℓi − ℓj)

,

so it suffices to show that the product of the hook lengths in the ith row is
ℓi!/

∏
i<j≤N (ℓi − ℓj). In fact, notice that the hook length of a box doesn’t

depend on any of the rows above it. In particular, we can argue that if we know
the product of the hook lengths in the top row, then we know the product of
the hook lengths in the next row, and we can induct to get the rest of the rows.
Indeed, let λ′ be the partition of n−λ1 obtained by removing the top row of λ,
so that λ′

j = λj+1. Since the number of parts of λ′ is one less than the number of
parts of λ, we takeN ′ = N−1. Then ℓ′j = λ′

j+N ′−j = λj+1+N−(j+1) = ℓj+1.
Thus the product of the hook lengths on the second row of λ, i.e. the top row
of λ′, is

ℓ′1!∏
1<j≤N ′(ℓ′1 − ℓ′j)

=
ℓ2!∏

1<j≤N−1(ℓ2 − ℓj+1)
=

ℓ2!∏
2<j≤N (ℓ2 − ℓj)

.

We can repeat this process since there are finitely many rows in a partition, so all
we need to do is finally prove the product of the hook lengths along the top row.
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First, we make another reduction. We have that N is greater than or equal to k,
the number of parts of λ. Suppose we have the hook length formula for N = k,
and we will show it works for N > k. Let m = N − k, and let ℓ′j = λj + k − j
for j ∈ {1, ..., k}. Then ℓj = ℓ′j + m for j ∈ {1, ..., k}, and ℓj = N − j for
j ∈ {k + 1, ..., N}. Notice that ℓ1 − ℓj = ℓ′1 − ℓ′j for j ∈ {1, ..., k}, since the
m cancels. For j ∈ {k + 1, ..., N} we have ℓ1 − ℓj = ℓ′1 + m − (N − j) =
ℓ′1 +m− (k +m− j) = ℓ′1 + j − k. Then

ℓ1!

ℓ′1!
=

(ℓ′1 +m)!

ℓ′1!
=

m∏
s=1

(ℓ′1 + s) =
∏

k<j≤N

(ℓ1 − ℓj).

Thus

ℓ1!∏
1<j≤N (ℓ1 − ℓj)

=
ℓ1!

ℓ′1!

ℓ′1!∏
1<j≤k(ℓ1 − ℓj)

1∏
k<j≤N (ℓ1 − ℓj)

=
ℓ′1!∏

1<j≤k(ℓ
′
1 − ℓ′j)

.

Now, we must show that for N = k we have the desired product. But I don’t
know how to do this.
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3 Problem 5

Let F be a field.

(a) Show that the derived group [GLn(F ), GLn(F )] ⊂ SLn(F ).

Proof. It suffices to show that the group commutator of two invertible ma-
trices has determinant one: if all the commutators are contained in SLn(F ),
then they generate a group contained in SLn(F ). This is true because the de-
terminant is a group homomorphism GLn(F ) → F×, so det(ABA−1B−1) =
det(A) det(B) det(A)−1 det(B)−1 = 1.

(b) If n ≥ 3, show that any elementary matrix is the commutator of elementary
matrices.

Proof. Let eij denote the matrix with a 1 in the (i, j) position and 0 elsewhere.
Note that eijekl = δjkeil, where δjk is the Kronecker delta symbol. An elemen-
tary matrix can be expressed as I + xeij where I is identity and i ̸= j. The
inverse of such a matrix is I−xeij since (I+xeij)(I−xeij) = I+xeij−xeij = I.
Since n ≥ 3, there is some k which is not equal to i and not equal to j. Then

[I + xeik, I + ekj ] = (I + xeik)(I + ekj)(I − xeik)(I − ekj)

= (I + xeik + ekj + xeij)(I − xeik − ekj + xeij)

= I − xeik − ekj + xeij + xeik − xeij + ekj + xeij = I + xeij .

(c) If n = 2 and |F | ≥ 3, show that any elementary matrix is the commutator
of a diagonal matrix and an elementary matrix.

Proof. We have[(
2 0
0 1

)
,

(
1 x
0 1

)]
=

(
2 0
0 1

)(
1 x
0 1

)(
2 0
0 1

)−1(
1 x
0 1

)−1

=

(
2 0
0 1

)(
1 x
0 1

)(
1
2 0
0 1

)(
1 −x
0 1

)
=

(
2 2x
0 1

)(
1
2

−x
2

0 1

)
=

(
1 x
0 1

)
,

and similarly [(
1 0
0 2

)
,

(
1 0
x 1

)]
=

(
1 0
x 1

)
.

(d) Show that [GLn(F ), GLn(F )] = SLn(F ) unless n = 2 and |F | = 2. What
happens for GL2(F2)?
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Proof. Parts (b) and (c) show that, unless n = 2 and |F | = 2, all elementary
matrices are in [GLn(F ), GLn(F )]. But elementary matrices generate SLn(F ),
so [GLn(F ), GLn(F )] = SLn(F ).

Note that GL2(F2) = SL2(F2), since the only nonzero element of F×
2 is 1. Since

there are only sixteen 2x2 matrices with entries in F2, we can write them all down

and find that there are six with nonzero determinant. Let I =

(
1 0
0 1

)
, σ =(

0 1
1 0

)
, τ =

(
1 1
1 0

)
. We find that σ2 = I = τ3 and στσ = τ2, which shows

that GL2(F2) ∼= S3. Now, notice that in the commutator [A,B] = ABA−1B−1,
we have a conjugate of B and an inverse of B. If B = I, then [A,B] = I. If B is
a transposition, then so are ABA−1 and B−1. The product of two transpositions
in S3 is either I or a 3-cycle. If B is a 3-cycle, then so are ABA−1 and B−1.
The product of two 3-cycles in S3 is either I or a 3-cycle. Thus, in any case,
[A,B] is either I or a 3-cycle, meaning that [GL2(F2), GL2(F2)] ∼= Z/3Z is a
proper subgroup of SL2(F2).
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