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1 Problem 2

Let θ be the linear automorphism of CSn defined by π 7→ (−1)ππ for π ∈ Sn.

(a) Show that θ is an algebra automorphism and that if (V, ρ) is a representation
of Sn, then (V, ρ ◦ θ) ∼= (V, ρ)⊗ sgn.

Proof. We are given that θ is a linear automorphism. That it is an algebra
automorphism is simply due to the fact that the sign of permutations is multi-
plicative, so that θ(πσ) = (−1)πσπσ = (−1)ππ(−1)σσ = θ(π)θ(σ).

Let η : (V, ρ ◦ θ) → (V, ρ) ⊗ sgn be the map v 7→ v ⊗ 1. This is clearly a
linear isomorphism. It is also a map of representations, because (ρ ◦ θ)(π)v =
(−1)πρ(π)v and π(v ⊗ 1) = ρ(π)v ⊗ (−1)π = (−1)πρ(π)v ⊗ 1. Thus η is an
isomorphism of representations.

(b) If λ is a partition, let λt denote the conjugate partition. Show that Vλt ∼=
Vλ ⊗ sgn.

Proof. Take a λ-tableau T and consider its conjugate T t. Then the row subgroup
PT ≤ Sn for T is the column subgroup QT t for T t, and similarly QT = PT t .
Then

θ(cT ) = θ

 ∑
g∈PT ,h∈QT

sgn(h)gh


=

∑
g∈PT ,h∈QT

sgn(h)sgn(g)sgn(h)θ(g)θ(h) =
∑

g∈PT ,h∈QT

sgn(g)θ(g)θ(h)

=
∑

g∈QTt ,h∈PTt

sgn(g)θ(g)θ(h) = bT taT t .

Thus, from part (a), we have CSnbT taT t ∼= CSnaT bT = Vλ. However, from
HW Problem 1 (which I will take for granted), we know that CSnbT taT t ∼=
CSnaT tbT t = Vλt , so we are done.
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2 Problem 3

(a) If λ is any partition of n, show that IndSn

An
ResSn

An
Vλ

∼= Vλ ⊕ Vλt .

Proof. It is a general fact that IndGHResGHV ∼= V ⊗P , where P is the permutation
representation of the cosets G/H. This follows from Homework 3 Problem 3(c),
with W = 1H . In our case, G = Sn, H = An, there are only two cosets in G/H,
so that P is a two-dimensional representation. One coset corresponds to the even
permutations, and the other corresponds to the odd permutations. Choose for
P the basis e0, e1 representing the even and odd cosets respectively. In this
basis, any even permutation acts by the identity, while any odd permutation

acts by

(
0 1
1 0

)
. Thus, the character of P has 2’s for even permutations and 0’s

for odd permutations. This is the same as the sum of characters of the trivial
and sign representations, so we must have P ∼= 1⊕ sgn. Thus,

IndSn

An
ResSn

An
Vλ

∼= Vλ ⊗ (1⊕ sgn) ∼= Vλ ⊕ (Vλ ⊗ sgn) = Vλ ⊕ Vλt ,

where we have used the isomorphism Vλt ∼= Vλ⊗sgn from the previous problem.

(b) Show that

dimHomAn
(ResSn

An
Vλ,Res

Sn

An
Vµ) =


2 if λ = µ = µt

1 if λ = µ or µt and µ ̸= µt

0 otherwise.

Proof. Since Res and Ind are adjoint, we have

dimHomAn
(ResSn

An
Vλ,Res

Sn

An
Vµ) = dimHomSn

(IndSn

An
ResSn

An
Vλ, Vµ)

= dimHomSn
(Vλ ⊕ Vλt , Vµ).

By Schur’s lemma, this dimension counts the number of times Vµ appears in
Vλ ⊕ Vλt , which gives the desired cases.

(c) Show that if λ ̸= λt, then ResSn

An
Vλ is irreducible, while if λ = λt, we have

ResSn

An
Vλ = Wλ ⊕W ′

λ, where Wλ and W ′
λ are conjugate, nonisomorphic irreps.

Proof. Recall that if V =
⊕

kiVi is a decomposition of a representation into
irreducibles, then dimHomG(V, V ) =

∑
k2i . This follows from Schur’s lemma.

From above, if λ ̸= λt, we have dimHomAn
(ResSn

An
Vλ,Res

Sn

An
Vλ) = 1, which

is enough to conclude irreducibility. On the other hand, if λ = λt, then
dimHomAn(Res

Sn

An
Vλ,Res

Sn

An
Vλ) = 2. This implies that ResSn

An
Vλ is a sum of

non-isomorphic irreps, say Wλ and W ′
λ, since the only way to express 2 as a

sum of squares is 12 + 12. Since ResSn

An
Vλ is self-conjugate, either Wλ and W ′

λ

are conjugate to each other, or they are both self-conjugate. If they are both
self-conjugate, then this lifts to a decomposition of Vλ, which is irreducible.
Thus they are conjugate to each other, as desired.
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(d) Show that every irrep of An is isomorphic to exactly one of the irreps defined
in the previous part.

Proof. Consider two distinct partitions λ, µ of n. Then

dimHomAn
(ResSn

An
Vλ,Res

Sn

An
Vµ) = 0.

If λ ̸= λt and µ ̸= µt, then ResVλ and ResVµ are both irreducible, and the
dimension formula shows they are not isomorphic. Similarly, if µ = µt and
λ ̸= λt, then neither Wµ nor W ′

µ are isomorphic to ResVλ. If λ and µ are both
self-conjugate, then Wλ,W

′
λ,Wµ,W

′
µ are all pairwise non-isomorphic, since an

isomorphism between one involving λ and one involving µ would contribute to
the dimension formula above. Thus, all the irreps we have obtained are non-
isomorphic. We obtained 2 for each self-conjugate partition of n, and 1 for each
unordered pair {λ, λt} where λ ̸= λt.

To show that these are all of the irreps, we use reciprocity. Let W be an irrep of
An. If it is disjoint from all the irreps above, then we have dimHom(W,ResVλ) =
0 for all partitions λ. By Frobenius reciprocity, this means dimHom(IndW,Vλ) =
0 for all λ, which is impossible, since the Vλ are all of the irreps of Sn and there
must be at least one sitting in IndW .
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3 Problem 6

Let F be an arbitrary field. Let Tλ be the set of Young tabloids of shape λ, and
let Uλ = F [Tλ] be the corresponding permutation module. Define the Specht
module Sλ as the submodule of Uλ spanned by the polytabloids eT as T ranges
over all λ-tableaux.

(a) Show that if S and T are two λ-tableaux, then bT {S} = 0 if two numbers in
the same row of S are in the same column of T , and bT {S} = ±eT otherwise.
Conclude that bTUλ ⊂ FeT .

Proof. Recall that bT =
∑

g∈QT
(−1)gg, where QT is the subgroup of Sn which

preserves columns of T . First suppose that λ = (n). Then S and T are obviously
equivalent, so bT {S} = bT {T} = eT . If λ ̸= (n), then T has a column with at
least two elements. Let a, b be two distinct elements in the same column of T .
Then (ab) is an odd element of QT , and in particular induces an involution of
QT which swaps even and odd elements by right multiplication. We can then
write

bT =
∑
g∈QT
g even

g −
∑
g∈QT
g odd

g =
∑
g∈QT
g even

g −
∑
g∈QT
g even

g(ab)

=

 ∑
g∈QT
g even

g

 (1− (ab)).

Thus we can write bT = y(1 − (ab)) for y ∈ FSn. If a, b are in the same
row of S, then (ab)S and S are equivalent, so that bT {S} = y(1 − (ab)){S} =
y{S} − y{(ab)S} = 0.

Now suppose that any two numbers in the same column of T are not in the
same row of S. Then there is some π ∈ QT such that {S} = π{T}, so that
bT {S} = bTπ{T} = (−1)πbT {T} = ±eT .

Finally, if {S1}, ..., {Sk} is a basis for Uλ, ordered so that for some r, bT {Si} =
±eT for i ≤ r and bT {Si} = 0 for i > r. Then

bT (a1{S1}+ ...+ ak{Sk}) = (±a1 ± ...± ar)eT ,

so bTUλ ⊂ FeT as desired.

(b) Define a symmetric bilinear form on Uλ via ⟨{S}, {T}⟩ = δ{S},{T}. Show
that this form is Sn-invariant and satisfies ⟨bTu, v⟩ = ⟨u, bT v⟩ for any Young
tableau T .

Proof. By linearity, it suffices to show Sn-invariance when the form is taken
on basis elements {S} and {T}. Of course, this just follows from the well-
definedness of the Sn action on tabloids. If {S} = {T}, i.e. S and T are

4



row-equivalent, then πS and πT are row equivalent for any π ∈ Sn. If S and T
are not row equivalent, then πS and πT cannot be row equivalent, since, if that
were the case, we could apply π−1 to conclude that S and T are row equivalent.

Again, by linearity, it suffices to show that ⟨bT {S1}, {S2}⟩ = ⟨{S1}, bT {S1}⟩.
We have

⟨bT {S1}, {S2}⟩ = ⟨
∑
g∈QT

(−1)gg{S1}, {S2}⟩ =
∑
g∈QT

(−1)g⟨g{S1}, {S2}⟩

=
∑
g∈QT

(−1)g⟨{S1}, g−1{S2}⟩,

where at the last step we have used the Sn invariance of the form. Since the
sign of g is the same as the sign of g−1, we can relabel the sum and use linearity
to get the desired result.

(c) Show that if M ⊂ Uλ is a submodule, then either Sλ ⊂ M or (Sλ)⊥ ⊃ M .

Proof. If a ∈ M and T is a λ-tableaux, then bTa is in FeT by part (a), and in
M by definition of submodule. If it is possible to choose a, T such that bTa ̸= 0,
then eT ∈ M , and therefore πeT = eπT ∈ M for all π ∈ Sn. Thus, Sλ ⊂ M .
On the other hand, if for all a, T we have bTa = 0, then 0 = ⟨bTa, {T}⟩ =
⟨a, bT {T}⟩ = ⟨a, eT ⟩, so a ∈ (Sλ)⊥. Thus M ⊂ (Sλ)⊥.

(d) Show that Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible. In the latter case,
show that Sλ ∩ (Sλ)⊥ is the unique maximal submodule of Sλ.

Proof. From part (c), any submodule M ⊂ Sλ either is Sλ or is contained in
Sλ ∩ (Sλ)⊥. That statement exactly implies that Sλ ∩ (Sλ)⊥ is the unique
maximal ideal, if it is not all of Sλ. If it is all of Sλ, then the quotient is clearly
0. Finally, since submodules L of a quotient M/N correspond to submodules
of M containing N , we see that Sλ/(Sλ ∩ (Sλ)⊥) cannot have any nontrivial
submodules, since the only submodules of Sλ containing Sλ ∩ (Sλ)⊥ are Sλ ∩
(Sλ)⊥ and Sλ.
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