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1 Problem 2

Let 6 be the linear automorphism of CS,, defined by © — (—1)"x for m € S,,.

(a) Show that 6 is an algebra automorphism and that if (V] p) is a representation
of Sy, then (V,po ) = (V,p) @ sgn.

Proof. We are given that 6 is a linear automorphism. That it is an algebra
automorphism is simply due to the fact that the sign of permutations is multi-
plicative, so that 8(wo) = (—1)™ 7o = (—=1)"n(—1)?0 = 0(m)0(0).

Let n : (V,pof) — (V,p) ® sgn be the map v — v ® 1. This is clearly a
linear isomorphism. It is also a map of representations, because (p o 0)(m)v =
(=D)™p(m)v and (v ® 1) = p(mMv @ (—1)™ = (—1)"p(7)v ® 1. Thus 7 is an
isomorphism of representations. O

(b) If X is a partition, let A\* denote the conjugate partition. Show that Vi« &
V) ® sgn.

Proof. Take a A-tableau T and consider its conjugate 7. Then the row subgroup
Pr < S, for T is the column subgroup Q7: for T%, and similarly Q7 = Pr.
Then

O(cy) =0 > sgn(h)gh

g€Pr ,heQT
= Y sen(h)sen(g)sen(h)8(9)0(h) = Y sen(g)8(9)(h)
gEPT hEQT gEPT,heQr

= > sgu(g)0(9)0(h) = brear:.

9EQrt ,hEPpt

Thus, from part (a), we have CSpbrears =2 CS,arbr = V). However, from
HW Problem 1 (which I will take for granted), we know that CS,brtap: =
CS,artbrt = Ve, so we are done. O



2 Problem 3
(a) If A is any partition of n, show that IndiT:LResi’; A =2V @ Ve

Proof. It is a general fact that InngesgV = V®P, where P is the permutation
representation of the cosets G/H. This follows from Homework 3 Problem 3(c),
with W = 1. In our case, G = S,,, H = A,,, there are only two cosets in G/H,
so that P is a two-dimensional representation. One coset corresponds to the even
permutations, and the other corresponds to the odd permutations. Choose for
P the basis eg, e; representing the even and odd cosets respectively. In this
basis, any even permutation acts by the identity, while any odd permutation

acts by <(1) (1)> . Thus, the character of P has 2’s for even permutations and 0’s

for odd permutations. This is the same as the sum of characters of the trivial
and sign representations, so we must have P = 1 @ sgn. Thus,

Ind3" Resy" Vi = V3 @ (1 @sgn) =V & (VA ® sgn) = Vi @ Vi,

where we have used the isomorphism Vy: = V) ® sgn from the previous problem.
O

(b) Show that

2 ifA=p=u
dim Hom 4, (Resi’; i, Resiﬁqu) =<1 ifA=porpu and p# pt

0 otherwise.

Proof. Since Res and Ind are adjoint, we have

dim Homy, (ResijL W, Resif; V,) = dimHomyg, (Indijl ResijL Vi, Vi)

= dim Homg, (Vi ® V¢, V},).

By Schur’s lemma, this dimension counts the number of times V), appears in
V @ V¢, which gives the desired cases. O

(c) Show that if A # A!, then Resi”; V, is irreducible, while if A = A, we have
Resi’: Vi = Wy @ Wy, where Wy and W} are conjugate, nonisomorphic irreps.

Proof. Recall that if V' = @ k;V; is a decomposition of a representation into
irreducibles, then dim Homg(V,V) = >" k2. This follows from Schur’s lemma.
From above, if A # A, we have dim Hom, (Resi"; V,\,Resi’; VA) = 1, which
is enough to conclude irreducibility. On the other hand, if A = !, then
dim Homy4,, (Resi”; VA,Resiz VA) = 2. This implies that Resiz V) is a sum of
non-isomorphic irreps, say W and WJ, since the only way to express 2 as a
sum of squares is 12 + 12. Since Resi’; Vi is self-conjugate, either Wy and Wy
are conjugate to each other, or they are both self-conjugate. If they are both
self-conjugate, then this lifts to a decomposition of V), which is irreducible.
Thus they are conjugate to each other, as desired. O



(d) Show that every irrep of A,, is isomorphic to exactly one of the irreps defined
in the previous part.

Proof. Consider two distinct partitions A, g of n. Then
dim Homy, (Resi: Vx, Resiz ) =0.

If A # X and p # p, then ResVy and ResV, are both irreducible, and the
dimension formula shows they are not isomorphic. Similarly, if 4 = u® and
A # A, then neither W), nor W}/L are isomorphic to ResV). If A and p are both
self-conjugate, then Wy, W, W, W,i are all pairwise non-isomorphic, since an
isomorphism between one involving A and one involving g would contribute to
the dimension formula above. Thus, all the irreps we have obtained are non-
isomorphic. We obtained 2 for each self-conjugate partition of n, and 1 for each
unordered pair {\, \'} where A # \'.

To show that these are all of the irreps, we use reciprocity. Let W be an irrep of
A,. Ifit is disjoint from all the irreps above, then we have dim Hom(W, ResV)) =
0 for all partitions A. By Frobenius reciprocity, this means dim Hom(IndW, V) =
0 for all A, which is impossible, since the V) are all of the irreps of \S;, and there
must be at least one sitting in IndW. O



3 Problem 6

Let F be an arbitrary field. Let T, be the set of Young tabloids of shape A, and
let Uy = F[T,] be the corresponding permutation module. Define the Specht
module S* as the submodule of Uy spanned by the polytabloids e as T ranges
over all A\-tableaux.

(a) Show that if S and T are two A-tableaux, then br{S} = 0 if two numbers in
the same row of S are in the same column of T, and by {S} = ter otherwise.
Conclude that byUy, C Fer.

Proof. Recall that by = ZgEQT(fl)gg, where Q7 is the subgroup of S;, which
preserves columus of T'. First suppose that A = (n). Then S and T" are obviously
equivalent, so br{S} = br{T} = ep. If A # (n), then T has a column with at
least two elements. Let a,b be two distinct elements in the same column of T
Then (ab) is an odd element of @7, and in particular induces an involution of
Q7 which swaps even and odd elements by right multiplication. We can then

write
br=Y 9- Y 9= > g- Y, glab)

9eEQT 9EQT geEQT geEQT
g even g odd g even g even

| g |- (.

geEQT
g even

Thus we can write by = y(1 — (ab)) for y € FS,. If a,b are in the same
row of S, then (ab)S and S are equivalent, so that bp{S} = y(1 — (ab)){S} =

y{5} — y{(ab)S} = 0.

Now suppose that any two numbers in the same column of T are not in the
same row of S. Then there is some m € Qp such that {S} = 7{T'}, so that
bT{S} = bTTr{T} = (71)7rbT{T} = :|:€T.

Finally, if {S1}, ..., {Sk} is a basis for Uy, ordered so that for some 7, by {S;} =
ter for i < r and br{S;} =0 for i > r. Then

br(ai{S1}+ ... + ax{Sk}) = (a1 £ ... £ a,)er,
so brUy C Fer as desired. O

(b) Define a symmetric bilinear form on Uy via ({S},{T'}) = d;sy,{r}. Show
that this form is S,-invariant and satisfies (byu,v) = (u,brv) for any Young
tableau T'.

Proof. By linearity, it suffices to show S,-invariance when the form is taken
on basis elements {S} and {T}. Of course, this just follows from the well-
definedness of the S,, action on tabloids. If {S} = {T}, i.e. S and T are



row-equivalent, then 75 and «T" are row equivalent for any = € S,,. If S and T'
are not row equivalent, then 7S and 7T cannot be row equivalent, since, if that
were the case, we could apply 7! to conclude that S and T are row equivalent.

Again, by linearity, it suffices to show that (bp{S1},{S2}) = ({S1},br{S1}).
We have

(br{Si}.{S2}) = (Y (—=1)7g{S1}. {S2}) = Y (—=1)%(g{S1},{S2})

geEQT geQT

= > (=)7{Si}, g S,

geEQT

where at the last step we have used the S,, invariance of the form. Since the
sign of g is the same as the sign of g~!, we can relabel the sum and use linearity
to get the desired result. O

(c) Show that if M C Uy is a submodule, then either S* C M or (S*)+ O M.

Proof. If a € M and T is a A-tableaux, then bra is in Fer by part (a), and in
M by definition of submodule. If it is possible to choose a, T such that bra # 0,
then er € M, and therefore mep = exr € M for all # € S,. Thus, S* C M.
On the other hand, if for all a,T we have bra = 0, then 0 = (bra,{T}) =
{a,br{T}) = {a,er), so a € (S*)*. Thus M C (S*)*. O

(d) Show that S*/(S* N (S*)*) is either 0 or irreducible. In the latter case,
show that S* N (S*)* is the unique maximal submodule of S*.

Proof. From part (c), any submodule M C S* either is S* or is contained in
S* N (S*)1. That statement exactly implies that S* N (S*)* is the unique
maximal ideal, if it is not all of S*. If it is all of S*, then the quotient is clearly
0. Finally, since submodules L of a quotient M/N correspond to submodules
of M containing N, we see that S*/(S* N (S*)*) cannot have any nontrivial
submodules, since the only submodules of S* containing S* N (S*)1 are S* N
(SM)+ and S*. O



