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1 Problem 3

Let H be subgroup of G and let γ and δ be class functions on H and G respec-
tively.

(a) Define a function on G via

IndGH(γ)(g) =
1

|H|
∑
t∈G

t−1gt∈H

γ(t−1gt).

Show directly that IndGH(γ) is a class function on G.

Proof. Let x, g ∈ G. Then

IndGH(γ)(x−1gx) =
1

|H|
∑
t∈G

t−1x−1gxt∈H

γ(t−1x−1gxt)

=
1

|H|
∑
t′∈G

t′−1gt′∈H

γ(t′−1gt′) = IndGH(γ)(g),

where t′ = xt. Reindexing the sum is valid because x : G → G is a bijection.

(b) Let C be a conjugacy class of G and let C1, ..., Cs be the (possibly empty)
collection of H-conjugacy classes into which C ∩H decomposes. Show that

IndGH(γ)(C) =
[G : H]

|C|

s∑
i=1

|Ci|γ(Ci).

Proof. Fix a representative g ∈ C. The sum defining IndGH(γ) picks out elements
t−1gt = x ∈ C ∩ H. There may overcounting corresponding to the situation
where t−1

1 gt1 = t−1
2 gt2 for distinct t1, t2 ∈ G. This means t1t

−1
2 is in the
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stabilizer of g, which by orbit-stabilizer has order |G|/|C|. Then all the elements
of C ∩H are overcounted by |G|/|C|. Thus,

IndGH(γ)(C) =
1

|H|
|G|
|C|

∑
x∈C∩H

γ(x) =
[G : H]

|C|
∑

x∈C∩H

γ(x).

Since γ is a class function, the sum can be broken up into a sum over the H-
conjugacy classes in C∩H. Grouping the terms γ(x) for x ∈ Ci gives |Ci|γ(Ci).
This gives the desired result.

(c) Let V and W be representations of G and H respectively. Show that
IndGH(W )⊗ V ∼= IndGH(W ⊗ ResGH(V )).

Proof. Recall that IndGH = CG⊗CH . Then define a map η : IndGH(W⊗ResGH(V )) →
IndGH(W )⊗ V by η(a⊗ (w ⊗ v)) = (a⊗ w)⊗ av where a ∈ CG,w ∈ W, v ∈ V ,
and extend by linearity. We should check that this is well-defined with the CH
tensor product. Namely, for any h ∈ H, we have a⊗(w⊗v) = ah−1⊗(hw⊗hv),
and the latter is mapped to (ah−1 ⊗ hw)⊗ ah−1hv = (a⊗w)⊗ av, so η is well-
defined. Let g ∈ G. Then η(ga⊗ (w ⊗ v)) = (ga⊗ w)⊗ gav = g · (a⊗ w)⊗ av,
so η is a G-map.

In the other direction, define µ : IndGH(W ) ⊗ V → IndGH(W ⊗ ResGH(V )) by
µ((a⊗w)⊗v) = a⊗ (w⊗a−1v). Clearly the two maps are inverse to each other,
but we still must check that this is well-defined for the CH tensor product, and
that this is a G-map. For h ∈ H, we have (a⊗ w)⊗ v = (ah−1 ⊗ hw)⊗ v, and
the latter expression is mapped to ah−1 ⊗ (hw ⊗ (ah−1)−1v) = ah−1 ⊗ (hw ⊗
ha−1v) = a ⊗ (w ⊗ a−1v). Thus µ is well-defined. Next, for g ∈ G, we have
µ((ga ⊗ w) ⊗ gv) = ga ⊗ (w ⊗ (ga)−1gv) = ga ⊗ (w ⊗ a−1v), so µ is a G-map.
Thus the two representations are isomorphic.

(d) Show that IndGH(γResGH(δ)) = IndGH(γ)δ.

Proof. First note that the IndGH that has been defined on class functions acts
on characters to give the character of the induced representation. That is, if
W = IndGH(V ), then χW = IndGH(χV ) (we showed this in class). Thus, when γ
is the character of an H representation W and δ is the character of a G rep-
resentation V , the equation is exactly the equation between the characters of
the representations IndGH(W ⊗ResGH(V )) and IndGH(W )⊗V respectively. Then,
from part (c), the equation holds.

In general, γ and δ can be expressed as a linear combination of characters. Thus,
it suffices to show that the expressions on the left and right hand side of the
equation are linear in γ and δ. Certainly, restriction of a function is linear, as
is multiplying functions together. The “nontrivial” step is to show that IndGH
is linear. But this is also clear from the definition, as the sum defining IndGH(γ)
does not depend on γ, and sums are linear. Thus, we are done.
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2 Problem 4

Let G be a group with subgroup H (both possibly infinite) and let (W,ρ) be
a representation of H over the field F . The coinduced representation of W is
defined by

CoindGH(W ) = {f : G → W | f(gh−1) = ρ(h)f(g) for all h ∈ H, g ∈ G},

with the G action given by (x · f)(g) = f(x−1g).

(a) Show that CoindGH(W ) is a representation isomorphic to HomH(FG,W )
where H acts on FG on the right and the G action is (g · f)(u) = f(g−1u).

Proof. It is a representation because (xy · f)(g) = f((xy)−1g) = f(y−1x−1g) =
(y ·f)(x−1g) = (x · (y ·f))(g) and (e ·f)(g) = f(e−1g) = f(g). The isomorphism
with HomH(FG,W ) is as follows: any f ∈ CoindGH(W ) extends linearly to a
map FG → W , which is an H map because f(h · g) = f(gh−1) = ρ(h)f(g) =
h · (f(g)). Thus, we have a map in the forward direction. Conversely, a map
FG → W always restricts to a map G → W , and again, the H map condition is
exactly the condition on the maps in CoindGH(W ). Furthermore, the G-action
on HomH(FG,W ) is the same action on CoindGH(W ), so the two representations
are isomorphic.

(b) Show that CoindGH is the right adjoint of ResGH .

Proof. We want to show that HomH(ResGHV,W ) is naturally isomorphic to
HomG(V,Coind

G
HW ). For an H-map f : V → W and v ∈ V , let f̃(v)(g) =

f(g−1v). Note that for h ∈ H we have f̃(v)(h · g) = f̃(v)(gh−1) = f(hg−1v) =
hf(g−1v) = hf̃(v)(g), so that f̃(v) is an H-map. Furthermore, for x ∈ G,
f̃(xv)(g) = f(g−1xv) = f̃(v)(x−1g) = (x · f̃(v))(g), so that f̃ is a G-map. The
map f 7→ f̃ is then a map from HomH(ResGHV,W ) to HomG(V,Coind

G
HW ).

As an inverse, we take f ′ ∈ HomG(V,Coind
G
HW ) to the map f

′
which sends

v ∈ V to f ′(v)(1). These are inverses because f̃(v)(1) = f(1−1v) = f(v) and

f
′
(g−1v) = f ′(g−1v)(1) = (g−1 · f(v))(1) = f(v)(g). f

′
is an H-map because

f
′
(hv) = f ′(hv)(1) = (h ·f ′(v))(1) = f ′(v)(h−1) = h ·(f(v)(1)) = h ·f ′

(v). Thus
we are done.

(c) Show that IndGH(W ) is isomorphic to the subspace of CoindGH(W ) consisting
of the functions supported on finitely many left H-cosets. In particular, show
that CoindGH(W ) ∼= IndGH(W ) ifH is of finite index inG. Can they be isomorphic
if the index is infinite?

Proof. For g ∈ G,w ∈ W , send g ⊗ w ∈ IndGH(W ) to the function fg,w defined
by

fg,w(x) =

{
(x−1g)w if x ∈ gH

0 if x ̸∈ gH
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First, this map is well-defined because g ⊗ w = gh−1 ⊗ hw is sent to a map
supported on gh−1H = gH, sending x ∈ gH to x−1gh−1hw = x−1gw, so it
is indeed fg,w. Next, we show fg,w is compatible with the H action. This is
fg,w(xh

−1) = hx−1gw = h(fg,w(x)) for x ∈ gH, since xh−1 ∈ gH also. For
x /∈ gH, we have xh−1 /∈ gH, so both sides of the equation are 0. Next, we
must show that the assignment g ⊗ w 7→ fg,w is a G-map. Indeed, for y ∈ G,
we have fyg,w is supported on ygH, and for x ∈ ygH, fyg,w(x) = x−1ygw.
But x ∈ ygH if and only if y−1x ∈ gH, in which case fg,w(y

−1x) = x−1ygw.
Furthermore, fg,w(y

−1x) = (y · fg,w)(x), so the assignment is a G-map.

We extend by linearity to a map defined on all of Ind. Notice that the sums
involved in FG and FG⊗FH W are finite, so that the image of Ind will consist
of (a priori not necessarily all) functions supported on finitely many cosets of H.

If f ∈ CoindGHW supported on finitely many cosets, then pick representatives
g1, ..., gn for the distinct(!) cosets it is supported on. Then, for x ∈ giH, write
x = gih, so that f(x) = h−1f(gi). In particular, f is determined by its values
on the gi. Let wi = f(gi). Then, for x = gih ∈ giH, we have fgi,wi(x) =
x−1giwi = h−1f(gi) = f(gih) = f(x). Then the element

∑n
i=1 gi ⊗ wi in

IndGHW is mapped to f in CoindGHW . This construction is also independent of
the choice of representatives: let g′i = gihi for hi ∈ H. Then

g′if(g
′
i) = gihf(gih) = gif(gihh

−1) = gif(gi),

so that fgi,wi is independent of the choice of representative for giH. Thus we
get a map from the functions supported on finitely many cosets to Ind, showing
that the two are indeed isomorphic.
If H is of finite index, then there are finitely many H-cosets, so all functions
in CoindGH(W ) are necessarily supported on finitely many left H-cosets. Thus
CoindGH(W ) ∼= IndGH(W ) in this case.

If the index is infinite, you can construct a function which is not supported on
finitely many cosets by choosing representatives gi for all the cosets and setting
f(gi) = w for some fixed non-zero element of W . The rest of the function is
determined by the H-map property. So, Ind and Coind cannot be isomorphic,
unless W = 0.
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3 Problem 6

Let G = SL2(Fp) where p is a prime.
(a) Show that G acts transitively on X = F2

p − {(0, 0)} with the stabilizer of

(1, 0) consisting of the matrices of the form

(
1 c
0 1

)
. What is |G|?

Proof. To show transitivity, it suffices to show that the orbit of (1, 0) is all of

X. Let (x, y) ∈ X, and first assume that x ̸= 0. Then

(
x 0
y x−1

)
∈ SL2(Fp)

and (
x 0
y x−1

)(
1
0

)
=

(
x
y

)
.

If x = 0, then y ̸= 0. Then

(
0 −y−1

y 0

)
∈ SL2(Fp) and

(
0 −y−1

y 0

)(
1
0

)
=

(
0
y

)
.

Thus the action is transitive.

Suppose that

(
a b
c d

)
fixes (1, 0). This forces the first column of the matrix to

be (1, 0), i.e. a = 1 and c = 0. The determinant of such a matrix is d, so the
condition of SL2 implies d = 1. The only free parameter is the top-right entry,
which can be anything in Fp. In particular, the stabilizer of (1, 0) has p elements.

Finally, we have

|G| = |X| · |Stab((1, 0))| = (p2 − 1) · p = p3 − p.

by the orbit-stabilizer theorem.

(b) LetB be the subgroup of upper triangular matrices. If α is a one-dimensional

representation of F∗
p, show that ϕα

(
a b
0 d

)
= α(a) is a representation of B.

Proof. For M1,M2 ∈ B, we have

M1M2 =

(
a b
0 d

)(
w x
0 z

)
=

(
aw ax+ bz
0 dz

)
,

so that ϕα(M1M2) = α(aw). Since α itself is a representation, α(aw) =
α(a)α(w) = ϕα(M1)ϕα(M2). This makes ϕα a one-dimensional representation
of B.

(c) Show that IndGB(ϕα) is irreducible if and only if α2 ̸= 1.
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Proof. Let s =

(
0 1
−1 0

)
. We want to show that G = B⊔BsB. First note that

B ∩BsB = ∅, since(
a b
0 a−1

)(
0 1
−1 0

)(
c d
0 c−1

)
=

(
−bc ac−1 − bd

−a−1c −a−1d

)

has a non-zero bottom-left entry. Now suppose

(
w x
y z

)
∈ G with y ̸= 0. Then

(
−1 −wy−1

0 −1

)(
0 1
−1 0

)(
y z
0 y−1

)
=

(
w x
y z

)
,

where the condition wz − xy = 1 is used. Thus G = B ⊔ BsB. Then

(
1 0
0 1

)
and s are a complete set of double-coset representatives.

Now let Bs = sBs−1 ∩B. An element of sBs−1 is of the form(
0 1
−1 0

)(
a b
0 a−1

)(
0 −1
1 0

)
=

(
a−1 0
−b a

)
.

Thus Bs consists of the diagonal matrices in G, which as a group is isomorphic

to F×
p (and by a I will mean

(
a 0
0 a−1

)
). In particular, Bs is a finite abelian

group, so the irreps are one-dimensional and form a group under multiplication.
Notice that ϕα restricts to α on Bs. For the conjugate representation, notice
that (

0 −1
1 0

)(
a 0
0 a−1

)(
0 1
−1 0

)
=

(
a−1 0
0 a

)
.

Then ϕs
α(a) = α(a−1). Thus,

⟨ϕα, ϕ
s
α⟩ =

1

p− 1

∑
a∈F×

p

ϕα(a)ϕ
s
α(a

−1) =
1

p− 1

∑
a∈F×

p

α2(a) = ⟨α2, 1⟩.

Again, since the irreps form a group, α2 is irreducible. Thus ⟨α2, 1⟩ = 0 iff
α2 ̸= 1. By Mackey’s irreducibility criterion, we are done.
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