MATH 7250 Homework 1

Andrea Bourque

September 2022

1 Problem 1

Let F be an algebraically closed field.

(a) Show that if A is a finitely generated commutative F-algebra, then every simple A-module is 1-dimensional.

Proof. It is a standard fact that every simple module for a commutative ring is isomorphic to a quotient of the ring by a maximal ideal. Thus let M be a simple A-module which is isomorphic to A/\mathfrak{m} for a maximal ideal \mathfrak{m} . Of course, A/\mathfrak{m} can be considered as a field. Since A is finitely generated over F, so is A/\mathfrak{m} (as an F-algebra). Zariski's lemma then says that A/\mathfrak{m} is a finite field extension of F. Since F is algebraically closed, this means that A/\mathfrak{m} is F, which means M is one-dimensional.

(b) For prime p, find the irreducible representations of the cyclic group Z_p over F.

Proof. Since Z_p is abelian and F is algebraically closed, the irreps are onedimensional. Furthermore, a representation of a cyclic group is determined by its image at a generator. The image ρ must satisfy $\rho^p = 1$. Suppose char $F \neq p$. Then there are p distinct pth roots of unity, each one giving an irrep of Z_p . If char F = p, then there is only the trivial representation, since $(x-1)^p = x^p - 1$ shows that 1 is the only pth root of unity.

(c) Find the irreducible representations of Z_p over \mathbb{R} .

Proof. Fix a generator of Z_p . Let V be an irrep, and let $A \in GL_{\mathbb{R}}(V)$ be the image of the generator. Then $A^p = \operatorname{id}$. A has a complex eigenpair (λ, v) . If it happens that $\lambda \in \mathbb{R}$, then $\mathbb{R}v$ is an invariant subspace. Since V is irreducible, $V = \mathbb{R}v$. If $\lambda \notin \mathbb{R}$, then the real and imaginary parts of v span an invariant subspace. Explicitly, $A\operatorname{Re}(v) = \operatorname{Re}(\lambda)\operatorname{Re}(v) - \operatorname{Im}(\lambda)\operatorname{Im}(v)$ and $A\operatorname{Im}(v) = \operatorname{Im}(\lambda)\operatorname{Re}(v) + \operatorname{Re}(\lambda)\operatorname{Im}(v)$. Again, since V is irreducible, V must be spanned by $\operatorname{Re}(v)$, $\operatorname{Im}(v)$. Notice that we could also choose the eigenpair $(\overline{\lambda}, \overline{v})$ and get the same conclusion. That is to say, the irrep is not classified by its eigenvalue, but by the unordered pair $\{\lambda, \overline{\lambda}\}$. Now, an eigenvalue of A must satisfy $\lambda^p = 1$. In the case p = 2, we have two possible real eigenvalues ± 1 , each giving a 1-dimensional irrep. For p > 2, The only real eigenvalue is 1, which gives the 1-dimensional trivial irrep. Otherwise, $\lambda = \exp(2\pi i k/p)$ for $k \in \{1, ..., p - 1\}$. Since $\overline{\lambda}$ is also an eigenvalue, we get (p-1)/2 2-dimensional irreps this way. They are all non-isomorphic because the trace of A is $\lambda + \overline{\lambda} = 2\cos(2\pi k/p)$.

2 Problem 4

Let V be a complex irreducible representation of a finite group G. Show that there is a unique G-invariant Hermitian inner product on V up to positive scalar.

Proof. First, a G-invariant Hermitian inner product exists by the averaging argument: We take any Hermitian inner product H (there is a canonical one assigned to any choice of basis), and then replace it by

$$H_G(v,w) = \frac{1}{|G|} \sum_{g \in G} H(gv,gw).$$

Let H and H' be two G-invariant Hermitian inner products on V. Consider their induced conjugate linear maps $\tilde{H} : v \mapsto H(v, -)$ and $\tilde{H}' : v \mapsto H'(v, -)$. Since V is finite dimensional, \tilde{H} is invertible. Then consider $\tilde{H}^{-1} \circ \tilde{H}' : V \to V$. If this is a G-map, then it will be a scalar by Schur's lemma. Then $\tilde{H}' = \tilde{H} \circ \lambda$, meaning $H'(v, w) = H(\lambda v, w) = \lambda H(v, w)$ for all v, w. Setting $v = w \neq 0$ implies that λ must be a positive real number.

We now show $\tilde{H}^{-1} \circ \tilde{H}'$ is a *G*-map. For any *H*-orthonormal basis e_i (one exists by Gram-Schmidt process), $\tilde{H}^{-1}(\alpha) = \sum_i \alpha(e_i)e_i$. Since *H* is *G*-invariant, for any *g*, ge_i is an *H*-orthonormal basis, since $H(ge_i, ge_j) = H(e_i, e_j) = \delta_{ij}$, and an equation of linear dependence would imply *g* is not invertible. Hence $\tilde{H}^{-1}(\alpha) = \sum_i \alpha(ge_i)ge_i$. Finally, we have

$$\begin{split} (\tilde{H}^{-1} \circ \tilde{H}')(gv) &= \sum_{i} H'(gv, ge_i)ge_i = \sum_{i} H'(v, e_i)ge_i \\ &= g\sum_{i} H'(v, e_i)e_i = g(\tilde{H}^{-1} \circ \tilde{H}')(v). \end{split}$$

This concludes the proof.

3 Problem 6

Let F be any field.

(a) Show that $P : \mathbf{Grp} \to \mathbf{F}\text{-}\mathbf{Alg}$ as defined below is a functor:

- P(G) = FG
- $P(f: G \to H)$ is the linear extension of f to a map $FG \to FH$.

Proof. We must check that P preserves identity morphisms and composition. For $\operatorname{id}_G: G \to G$, we have $P(\operatorname{id}_G)(\sum a_g g) = \sum a_g \operatorname{id}_G(g) = \sum a_g g$, so $P(\operatorname{id}_g) = \operatorname{id}_{FG}$.

Now let $f : G \to H$ and $h : H \to K$. We have $P(h \circ f)(\sum a_g g) = \sum a_g h(f(g))$, whereas $(P(h) \circ P(f))(\sum a_g g) = P(h)(\sum a_g f(g)) = \sum a_g h(f(g))$, so $P(h \circ f) = P(h) \circ P(f)$.

(b) Given an algebra morphism $f : A \to B$, define $f^{\times} : A^{\times} \to B^{\times}$ so that $^{\times}$ is a functor **F-Alg** \to **Grp**.

Proof. If $a \in A^{\times}$, then $f(a) \in B^{\times}$ since it has an inverse $f(a^{-1})$. Thus we take $f^{\times} : A^{\times} \to B^{\times}$ to be the restriction of f to A^{\times} . Restriction preserves identity and composition, so $^{\times}$ is a functor.

(c) Show that P is left adjoint to \times .

Proof. Given a group G and an F-algebra A, we construct $\Phi(G, A)$ as follows. For a group morphism $f: G \to A^{\times}$, let $\Phi(G, A)(f): P(G) \to A$ send $\sum a_g g$ to $\sum a_g f(g)$. In the opposite direction, suppose we are given an F-algebra morphism $f: FG \to A$. Consider $g \in G$ as an element $1g \in FG$; it is a unit, so f(1g) is a unit as well. Thus, we get a group morphism $f_G: G \to A^{\times}$ by restricting f to the elements 1g. Since knowing the action on the "pure" elements $1g \in FG$ is enough to determine a morphism out of FG, we see that these constructions are inverse to each other, establishing that $\Phi(G, A)$ is a bijection.

Next, we show that $\Phi(G, A)$ is natural in G and A. Let $\alpha : G' \to G$ be a group morphism and let $\beta : A \to A'$ be an F-algebra morphism. Given $f : G \to A^{\times}$, $\Phi(G', A')(\beta^{\times} \circ f \circ \alpha)$ sends $\sum a_{g'}g' \in FG'$ to $\sum a_{g'}\beta^{\times}(f(\alpha(g')))$. Recall that β^{\times} is just a restriction of β , so that $\sum a_{g'}\beta^{\times}(f(\alpha(g'))) = \sum a_{g'}\beta(f(\alpha(g'))) = \beta(\sum a_{g'}f(\alpha(g')))$. Now, $\sum a_{g'}f(\alpha(g')) = \Phi(G, A)(f)(\sum a_{g'}\alpha(g'))$, and $\sum a_{g'}\alpha(g') = P(\alpha)(\sum a_{g'}g')$, so $\Phi(G', A')(\beta^{\times} \circ f \circ \alpha) = \beta \circ \Phi(G, A)(f) \circ P(\alpha)$.