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1 Problem 1

Let F' be an algebraically closed field.
(a) Show that if A is a finitely generated commutative F-algebra, then every
simple A-module is 1-dimensional.

Proof. 1t is a standard fact that every simple module for a commutative ring is
isomorphic to a quotient of the ring by a maximal ideal. Thus let M be a simple
A-module which is isomorphic to A/m for a maximal ideal m. Of course, A/m
can be considered as a field. Since A is finitely generated over F, so is A/m (as
an F-algebra). Zariski’s lemma then says that A/m is a finite field extension of
F. Since F is algebraically closed, this means that A/m is F, which means M
is one-dimensional. O

(b) For prime p, find the irreducible representations of the cyclic group Z,
over F'.

Proof. Since Z, is abelian and F' is algebraically closed, the irreps are one-
dimensional. Furthermore, a representation of a cyclic group is determined by
its image at a generator. The image p must satisfy p? = 1. Suppose char F' # p.
Then there are p distinct pth roots of unity, each one giving an irrep of Z,. If
char F' = p, then there is only the trivial representation, since (x —1)P = 2P — 1
shows that 1 is the only pth root of unity. O

(c) Find the irreducible representations of Z, over R.

Proof. Fix a generator of Z,. Let V be an irrep, and let A € GLg(V) be
the image of the generator. Then AP = id. A has a complex eigenpair (A, v).
If it happens that A\ € R, then Rv is an invariant subspace. Since V is ir-
reducible, V' = Rv. If A ¢ R, then the real and imaginary parts of v span
an invariant subspace. Explicitly, ARe(v) = Re(A)Re(v) — Im(A\)Im(v) and
Alm(v) = Im(A)Re(v) + Re(A)Im(v). Again, since V is irreducible, V must be
spanned by Re(v),Im(v). Notice that we could also choose the eigenpair (), )
and get the same conclusion. That is to say, the irrep is not classified by its
eigenvalue, but by the unordered pair {\, \}.



Now, an eigenvalue of A must satisfy A = 1. In the case p = 2, we have two
possible real eigenvalues +1, each giving a 1-dimensional irrep. For p > 2, The
only real eigenvalue is 1, which gives the 1-dimensional trivial irrep. Otherwise,
A\ = exp(2mik/p) for k € {1,...,p — 1}. Since ) is also an eigenvalue, we get
(p — 1)/2 2-dimensional irreps this way. They are all non-isomorphic because
the trace of A is A + X = 2cos(27k/p). O



2 Problem 4

Let V be a complex irreducible representation of a finite group G. Show that
there is a unique G-invariant Hermitian inner product on V' up to positive scalar.

Proof. First, a G-invariant Hermitian inner product exists by the averaging
argument: We take any Hermitian inner product H (there is a canonical one
assigned to any choice of basis), and then replace it by

He(v,w) a ZHgv gw).
e | =2

Let H and H' be two G-invariant Hermitian inner products on V. Consider
their induced conjugate linear maps H:vw— H(v,—) and H : v — H'(v,—).
Since V is finite dimensional, H is invertible. Then consider H~ Yo H' : V — V.
If this is a G-map, then it will be a scalar by Schur’s lemma. Then H' = Ho ),
meaning H'(v,w) = H(M,w) = AH(v,w) for all v,w. Setting v = w # 0
implies that A must be a positive real number.

We now show H'o H' is a G-map. For any H-orthonormal basis e; (one
exists by Gram-Schmidt process), H~ (o) = 3, a(e;)e;. Since H is G-invariant,
for any g, ge; is an H-orthonormal basis, since H(ge;,ge;) = H(e;, e;) = i,
and an equation of linear dependence would imply g is not invertible. Hence
H~'(a) =Y, a(ge;)ge;. Finally, we have

(H Yo H')(g ZH (gv,gei)ge; = ZH (v,e:)ge;

= gZH (v,e;)e; = g(Hfl © H/)(U)'

This concludes the proof. O



3 Problem 6

Let F' be any field.
(a) Show that P : Grp — F-Alg as defined below is a functor:

e P(G)=FG
e P(f:G — H) is the linear extension of f to a map FG — FH.

Proof. We must check that P preserves identity morphisms and composition.
For idg : G — G, we have P(idg)(D_ aq9) = > agida(g) = > agg, so P(idy) =
idF(;.

Now let f : G — H and h : H — K. We have P(ho f)(>"a49)

- agh(f(g)), whereas (P(h)o P(f))(3_ agg) = P(h)(3_ asf(9)) = Zagh(f(g);
so P(ho f) = P(h)o P(f). O

(b) Given an algebra morphism f : A — B, define f* : A* — B* so that *
is a functor F-Alg — Grp.

Proof. If a € A*, then f(a) € B* since it has an inverse f(a~!). Thus we take
f* A% — B* to be the restriction of f to A*. Restriction preserves identity
and composition, so * is a functor. O

(c) Show that P is left adjoint to *.

Proof. Given a group G and an F-algebra A, we construct ®(G, A) as follows.
For a group morphism f : G — A%, let (G, A)(f) : P(G) = A send ) azg
to > agf(g). In the opposite direction, suppose we are given an F-algebra
morphism f : FG — A. Consider g € G as an element 1g € FGj it is a unit,
so f(1g) is a unit as well. Thus, we get a group morphism fg : G — A~
by restricting f to the elements 1g. Since knowing the action on the “pure”
elements 1g € F'G is enough to determine a morphism out of F'G, we see that
these constructions are inverse to each other, establishing that ®(G, A) is a
bijection.

Next, we show that ®(G, A) is natural in G and A. Let a : G’ — G be a
group morphism and let 5 : A — A’ be an F-algebra morphism. Given f : G —
AX,B(G A (BXofoa)sends Y agyg’ € FG' to Y ayB*(f(a(g'))). Recall that
B is just a restriction of 3, so that > ay 8™ (f(a(g'))) = D agyB(flald))) =
B(X ay f(alg)))- Now, Y- ay f(alg)) = B(G, A)(F)(X agalg)), and 3 agalg’) =
P(a)(Xagg'), so ®(G',A) (B o foa)=L0o®(G,A)(f)o Pla). O
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