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1 Problem 1

Let F be an algebraically closed field.
(a) Show that if A is a finitely generated commutative F -algebra, then every

simple A-module is 1-dimensional.

Proof. It is a standard fact that every simple module for a commutative ring is
isomorphic to a quotient of the ring by a maximal ideal. Thus let M be a simple
A-module which is isomorphic to A/m for a maximal ideal m. Of course, A/m
can be considered as a field. Since A is finitely generated over F , so is A/m (as
an F -algebra). Zariski’s lemma then says that A/m is a finite field extension of
F . Since F is algebraically closed, this means that A/m is F , which means M
is one-dimensional.

(b) For prime p, find the irreducible representations of the cyclic group Zp

over F .

Proof. Since Zp is abelian and F is algebraically closed, the irreps are one-
dimensional. Furthermore, a representation of a cyclic group is determined by
its image at a generator. The image ρ must satisfy ρp = 1. Suppose char F ̸= p.
Then there are p distinct pth roots of unity, each one giving an irrep of Zp. If
char F = p, then there is only the trivial representation, since (x− 1)p = xp− 1
shows that 1 is the only pth root of unity.

(c) Find the irreducible representations of Zp over R.

Proof. Fix a generator of Zp. Let V be an irrep, and let A ∈ GLR(V ) be
the image of the generator. Then Ap = id. A has a complex eigenpair (λ, v).
If it happens that λ ∈ R, then Rv is an invariant subspace. Since V is ir-
reducible, V = Rv. If λ /∈ R, then the real and imaginary parts of v span
an invariant subspace. Explicitly, ARe(v) = Re(λ)Re(v) − Im(λ)Im(v) and
AIm(v) = Im(λ)Re(v) + Re(λ)Im(v). Again, since V is irreducible, V must be
spanned by Re(v), Im(v). Notice that we could also choose the eigenpair (λ, v)
and get the same conclusion. That is to say, the irrep is not classified by its
eigenvalue, but by the unordered pair {λ, λ}.
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Now, an eigenvalue of A must satisfy λp = 1. In the case p = 2, we have two
possible real eigenvalues ±1, each giving a 1-dimensional irrep. For p > 2, The
only real eigenvalue is 1, which gives the 1-dimensional trivial irrep. Otherwise,
λ = exp(2πik/p) for k ∈ {1, ..., p − 1}. Since λ is also an eigenvalue, we get
(p − 1)/2 2-dimensional irreps this way. They are all non-isomorphic because
the trace of A is λ+ λ = 2 cos(2πk/p).
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2 Problem 4

Let V be a complex irreducible representation of a finite group G. Show that
there is a unique G-invariant Hermitian inner product on V up to positive scalar.

Proof. First, a G-invariant Hermitian inner product exists by the averaging
argument: We take any Hermitian inner product H (there is a canonical one
assigned to any choice of basis), and then replace it by

HG(v, w) =
1

|G|
∑
g∈G

H(gv, gw).

Let H and H ′ be two G-invariant Hermitian inner products on V . Consider
their induced conjugate linear maps H̃ : v 7→ H(v,−) and H̃ ′ : v 7→ H ′(v,−).
Since V is finite dimensional, H̃ is invertible. Then consider H̃−1 ◦ H̃ ′ : V → V .
If this is a G-map, then it will be a scalar by Schur’s lemma. Then H̃ ′ = H̃ ◦ λ,
meaning H ′(v, w) = H(λv,w) = λH(v, w) for all v, w. Setting v = w ̸= 0
implies that λ must be a positive real number.

We now show H̃−1 ◦ H̃ ′ is a G-map. For any H-orthonormal basis ei (one
exists by Gram-Schmidt process), H̃−1(α) =

∑
i α(ei)ei. SinceH isG-invariant,

for any g, gei is an H-orthonormal basis, since H(gei, gej) = H(ei, ej) = δij ,
and an equation of linear dependence would imply g is not invertible. Hence
H̃−1(α) =

∑
i α(gei)gei. Finally, we have

(H̃−1 ◦ H̃ ′)(gv) =
∑
i

H ′(gv, gei)gei =
∑
i

H ′(v, ei)gei

= g
∑
i

H ′(v, ei)ei = g(H̃−1 ◦ H̃ ′)(v).

This concludes the proof.
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3 Problem 6

Let F be any field.
(a) Show that P : Grp → F-Alg as defined below is a functor:

• P (G) = FG

• P (f : G → H) is the linear extension of f to a map FG → FH.

Proof. We must check that P preserves identity morphisms and composition.
For idG : G → G, we have P (idG)(

∑
agg) =

∑
agidG(g) =

∑
agg, so P (idg) =

idFG.
Now let f : G → H and h : H → K. We have P (h ◦ f)(

∑
agg) =∑

agh(f(g)), whereas (P (h)◦P (f))(
∑

agg) = P (h)(
∑

agf(g)) =
∑

agh(f(g)),
so P (h ◦ f) = P (h) ◦ P (f).

(b) Given an algebra morphism f : A → B, define f× : A× → B× so that ×

is a functor F-Alg → Grp.

Proof. If a ∈ A×, then f(a) ∈ B× since it has an inverse f(a−1). Thus we take
f× : A× → B× to be the restriction of f to A×. Restriction preserves identity
and composition, so × is a functor.

(c) Show that P is left adjoint to ×.

Proof. Given a group G and an F -algebra A, we construct Φ(G,A) as follows.
For a group morphism f : G → A×, let Φ(G,A)(f) : P (G) → A send

∑
agg

to
∑

agf(g). In the opposite direction, suppose we are given an F -algebra
morphism f : FG → A. Consider g ∈ G as an element 1g ∈ FG; it is a unit,
so f(1g) is a unit as well. Thus, we get a group morphism fG : G → A×

by restricting f to the elements 1g. Since knowing the action on the “pure”
elements 1g ∈ FG is enough to determine a morphism out of FG, we see that
these constructions are inverse to each other, establishing that Φ(G,A) is a
bijection.

Next, we show that Φ(G,A) is natural in G and A. Let α : G′ → G be a
group morphism and let β : A → A′ be an F -algebra morphism. Given f : G →
A×, Φ(G′, A′)(β×◦f ◦α) sends

∑
ag′g′ ∈ FG′ to

∑
ag′β×(f(α(g′))). Recall that

β× is just a restriction of β, so that
∑

ag′β×(f(α(g′))) =
∑

ag′β(f(α(g′))) =
β(

∑
ag′f(α(g′))).Now,

∑
ag′f(α(g′)) = Φ(G,A)(f)(

∑
ag′α(g′)), and

∑
ag′α(g′) =

P (α)(
∑

ag′g′), so Φ(G′, A′)(β× ◦ f ◦ α) = β ◦ Φ(G,A)(f) ◦ P (α).
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