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1 Problem 7.1

For chain complexes A•, B• of objects in an abelian category, and a chain map
A• → B•, consider the triangle

Cone•(u)

A• B•

w[1]

u

v

Show that v ◦ u and w[1] ◦ v are chain-homotopic to 0.

Proof. In fact, w[1] ◦ v = 0. The map v is v(b) = (0, b), and the map w[1] is
w[1](a, b) = a. Thus w[1] ◦ v(b) = w[1](0, b) = 0.

For v ◦ u, consider the map f : A• → Cone•(u)[−1] sending a to (a, 0). Then

f ◦ dA(a) = (dAa, 0) and dCone ◦ f(a) =

(
−dA 0
u dB

)
(a, 0) = (−dAa, u(a)).

Thus v ◦ u(a) = (0, u(a)) = f ◦ dA(a) + dCone ◦ f(a), so v ◦ u is chain homotopic
to 0.
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2 Problem 7.2

Suppose now that 0 → A• α−→ B• β−→ C• → 0 is an exact sequence, and α = u,
the map from the previous problem. Construct a quasi-isomorphism s such that
the following diagram commutes:

Cone•(u) C•

A• B•

w[1]

u=α

v

s

β

Proof. Let s(a, b) = β(b). Since v(b) = (0, b), this clearly makes the diagram
commute. Then we must show s is a quasi-isomorphism. Since each βn is surjec-
tive, each sn is surjective, and thus so are the induced maps on cohomology. To
show they are injective, consider (a, b) ∈ Cone•(u) with d(a, b) = (−da, u(a) +
db) = 0 which maps to dc for some c ∈ C•., i.e. β(b) = dc. Since each βn is sur-
jective, there is some b′ such that c = β(b′). Then dc = dβ(b′) = β(db′). Then
b− db′ ∈ kerβ = imα = imu, so that there is some a′ such that b− db′ = u(a′).
Applying d to both sides and using d2 = 0, we have db = du(a′) = u(da′). But
u(a) + db = 0, so −u(a) = u(da′). Then a + da′ ∈ keru = kerα = 0, so that
a = −da′. Thus (a, b) = d(a′, b′) = (−da′, u(a′) + db′). This means that the
induced maps on cohomology are injective.
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3 Problem 11.3

Show that Y ⊂ X = SpecA is irreducible if and only if I(Y ) ⊂ A is a prime
ideal.

Proof. Suppose Y is irreducible. Let x, y ∈ A be such that xy ∈ I(Y ). Then
V (I(Y )+(x))∪V (I(Y )+(y)) = V (I(Y )2+xI(Y )+yI(Y )+(xy)) = V (I(Y )) =
Y , where the second to last inequality uses xy ∈ I(Y ) and radical of I(Y )2 is
I(Y ), and the last inequality uses that Y is closed (irreducible subsets are always
closed). Since Y is irreducible, then without loss of generality V (I(Y ) + (x)) =
Y , so that the radical of I(Y ) + (x) equals the radical of I(Y ), which is I(Y ).
Since x ∈ I(Y ) + (x), this means x ∈ I(Y ), so I(Y ) is prime.

If I(Y ) is prime, suppose Y = Y1 ∪ Y2 for proper closed subsets Y1, Y2 of Y .
Then I(Y ) is properly contained in I(Y1) and I(Y2), so that there are elements
a1 ∈ I(Y1)− I(Y ), a2 ∈ I(Y2)− I(Y ). Then a1a2 ∈ I(Y1)∩ I(Y2) = I(Y1∪Y2) =
I(Y ). Since I(Y ) is prime, this means a1 ∈ I(Y ) or a2 ∈ I(Y ), a contradiction.
Thus Y is irreducible.
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4 Problem 12.1

Let Y ⊂ A3 be the set {(t, t2, t3) | t ∈ k}. Show that Y is an affine variety of
dimension 1. Find generators for the ideal I(Y ). Show that A(Y ) is isomorphic
to a polynomial ring in one variable over k.

Proof. We use Singular. First, we define an ideal I in k[x, y, z, t] with generators

x−t, y−t2, z−t3, and then use eliminate(I,t); to get generators without not
involving t. Then, we switch to k[x, y, z] and create the ideal with the generators

without t, and then use dim(std(I)); to get the dimension. It is important

to have std(I) so that Singular can properly compute the dimension. Doing
this shows that I(Y ) = (y2 −xz, xy− z, x2 − y) and the dimension is 1. In fact,
from these generators we can also get the dimension by computing the Jacobian
matrix and using row/column operations to show that it always has rank 2.
Finally, A(Y ) = k[x, y, z]/I(Y ) = k[x, x2, x3] = k[x].

4



5 Problem 12.2

Let Y ⊂ A3 be defined by x2 − yz = 0 and xz − x = 0. Show that Y is a union
of three irreducible components. Describe them and find their prime ideals.

Proof. Note the second equation factors, so we get x = 0 or z = 1. If x = 0,
then y = 0 or z = 0. If z = 1, then y = x2. Thus, the three irreducible
components are the y-axis, the z-axis, and the parabola y = x2 in the z = 1
plane. The corresponding primes are (x, z), (x, y), (x2 − y, z − 1). This can be
double-checked in Singular. First, load primdec.lib via LIB "primdec.lib"; .

Then
ring r = 0,(x,y,z),dp;

ideal i = x2-yz, xz-x;

list pr = primdecGTZ(i);

pr;

displays the primary decomposition of the ideal corresponding to Y , along with
the associated primes.
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6 Problem 12.3

Let Y ⊂ A3 be given parametrically by x = t3, y = t4, z = t5. Show that I(Y ) is
a prime ideal of height 2 in k[x, y, z] which cannot be generated by 2 elements.

Proof. We again use Singular. First, we create an ideal in k[x, y, z, t] gener-
ated by x − t3, y − t4, z − t5, and then using eliminate to get rid of the t
dependence. We get I(Y ) = (y2 − xz, x2y − z2, x3 − yz). Computing the
primary decomposition of this ideal shows that it has one associated prime,
(y5−z4, y2−xz, xy3−z3, x2y−z2, x3−yz). At first, this may seem larger, since it
has more generators. However, modulo I(Y ), y5 = y(xz)2 = x2yz2 = z2z2 = z4,
and xy3 = xy(xz) = x2yz = z2z = z3, so in fact this new ideal is just I(Y ).
Thus I(Y ) is prime. Geometrically, this corresponds to Y being irreducible,
which makes sense because it is just a curve parametrized by one variable. To
compute its height, we must use primdecint.lib, which has the function heightZ;
the height of I(Y ) is 2. Geometrically, the height is dim k3−dimY = 3−1. Fi-
nally, we use mres to get a minimal resolution of I(Y ), which tells us the minimal
number of generators; it is 3, so I(Y ) cannot be generated by 2 elements.
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7 Problem 12.4

(a) Show that a topological space is noetherian if and only if every open set is
quasi-compact.

Proof. First suppose X is a noetherian topological space. Let U be an open
subset of X, and let {Uα} be an open cover of U . Consdier the ascending chain
of opens given by taking unions of the Uα, i.e. each step includes a new element
of the cover. An ascending chain of opens corresponds to a descending chain of
their closed complements, which must terminate after finitely many steps. This
means the union of the Uα does not change after some finite number of steps.
This gives a finite cover of U .

Now suppose every open set of X is quasi-compact. Consider a descending
chain of closed sets. This corresponds to an ascending chain of their open
complements. The union of the opens in this chain is an open set with the
elements of the chain forming an open cover. There is a finite sub-cover, meaning
it takes only finitely many steps in the chain to get the full union. Thus the
chain of closed sets terminates also.

(b) If X is an affine scheme, show that X is quasi-compact, but not in general
noetherian.

Proof. By definition, an affine scheme X is isomorphic as locally ringed space to
the spectrum of a ring, say X ∼= SpecA. We have seen before that the spectrum
of a ring is quasi-compact, meaning X is as well. As a proof of this fact, though,
we use the basis of open sets D(f) which are the complement of the closed V (f).
The union of sets D(fi) for i ∈ I is the complement of the intersection of the
V (fi), which is V ((fi)|i∈I) Assuming that the D(fi) cover SpecA, then we have
that (fi)|i∈I = (1), so there is a finite A-linear combination of the fi equalling 1.
Then the collection of opens corresponding to the non-zero terms in this linear
combination is a finite subcover.

As an example of when SpecA is not noetherian, we take A = C[x1, x2, ...].
Then the ascending, non-terminating chain of radical ideals (x1) ⊂ (x1, x2) ⊂
... corresponds to a descending chain of closed sets, which must also be non-
terminating.

(c) If A is a noetherian ring, show that SpecA is noetherian.

Proof. A descending chains of closed subsets of SpecA correspond bijectively to
ascending chains of radical ideals in A. Since A is noetherian, such ascending
chains must terminate eventually, meaning the descending chains also terminate
eventually.

(d) Give an example to show that SpecA can be noetherian even when A is not.
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Proof. Let A = C[x1, x2, ...]/(x
2
1, x

2
2, ...). Since x2

i = 0 ∈ P for any prime ideal
P , then xi ∈ P , so that (x1, x2, ...) = P . Then SpecA consists of a single point
corresponding to the unique prime ideal (x1, x2, ...), and so is trivially noethe-
rian. However A itself is not noetherian since it has a non-finitely generated
ideal, namely the aforementioned ideal.
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8 Problem 13.1

(a) If T1 ⊂ T2 are subsets of Sh, then Z(T1) ⊃ Z(T2).

Proof. Let P ∈ Z(T2). Then all elements of T2 vanish on P . Since every element
of T1 is an element of T2, we must have that all elements of T1 vanish on P , so
P ∈ Z(T1).

(b) If Y1 ⊂ Y2 are subsets of Pn, then I(Y1) ⊃ I(Y2).

Proof. Let f ∈ I(Y2). Then f vanishes on all of Y2. Then f must vanish on all
of Y1 as well, so f ∈ I(Y1).

(c) For any two subsets Y1, Y2 of Pn, we have I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

Proof. Since Y1, Y2 ⊂ Y1 ∪ Y2, from part (b) we have that I(Y1 ∪ Y2) ⊂ I(Y1)
and I(Y1 ∪ Y2) ⊂ I(Y2), so I(Y1 ∪ Y2) ⊂ I(Y1) ∩ I(Y2). Conversely, if f ∈
I(Y1) ∩ I(Y2), then let P ∈ Y1 ∪ Y2. If P ∈ Y1, then since f ∈ I(Y1), f(P ) = 0.
If P ∈ Y2, then since f ∈ I(Y2), f(P ) = 0. Thus f vanishes on Y1 ∪ Y2, so
I(Y1 ∪ Y2) ⊃ I(Y1) ∩ I(Y2).

(d) If a ⊂ S is a homogeneous ideal with Z(a) ̸= ∅, then I(Z(a)) =
√
a.

Proof. By the homogeneous Nullstellensatz (Hartshorne Exercise I.2.1), I(Z(a)) ⊂√
a. On the other hand, since a ⊂ I(Z(a)) and I(Y ) is always a radical ideal,

we have
√
a ⊂ I(Z(a)).

(e) For any subset Y ⊂ Pn, we have Z(I(Y )) = Y .

Proof. Since Y ⊂ Z(I(Y )) and Z(I(Y )) is closed by definition, we have Y ⊂
Z(I(Y )). But Y = Z(J) for some ideal J , so that for any P ∈ Y and any f ∈ J ,
we have f(P ) = 0. Then J ⊂ I(Y ), so Z(I(Y )) ⊂ Z(J) = Y .
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9 Problem 13.2

(a) There is a 1-1 inclusion reversing correspondence between algebraic sets in
Pn and homogeneous radical ideals of S not equal to S, given by Y 7→ I(Y ) and
a 7→ Z(a).

Proof. To show that I(Y ) is radical, suppose fn ∈ I(Y ) for some integer n > 0.
Then fn(P ) = 0 for all P ∈ Y . But since we are working over a field, this
must mean f(P ) = 0 for all P ∈ Y , i.e. f ∈ I(Y ). On the other hand, Z(a)
is an algebraic set by definition. Inclusion reversing was proved in the previous
problem. Finally, since I(Z(a)) = a for radical ideals and Z(I(Y )) = Y for
algebraic sets, the correspondence is 1-1.

(b) An algebraic set Y ⊂ Pn is irreducible if and only if I(Y ) is a prime ideal.

Proof. The proof is the exact same as in Problem 11.3.

(c) Show that Pn itself is irreducible.

Proof. I(Pn) = (0), which is clearly prime.
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10 Problem 13.3

If Y ⊂ An is an affine variety, we identify An with an open set U0 ⊆ Pn by the
homeomorphism φ0. Then we can speak of the closure of Y in Pn, called the
projective closure.

(a) Show that I(Y ) is the ideal generated by β(I(Y )), using the notation of the
proof of (2.2).

Proof. Here β : k[x1, ..., xn] → k[X0, ..., Xn]
h sends polynomial g of degree

e to the homogeneous polynomial Xe
0g(X1/X0, ..., Xn/X0). Note that Y =

Z(I(φ−1
0 (Y ))), so that I(Y ) = I(φ−1

0 (Y )), the set of homogeneous polynomials
which vanish on the image of Y in Pn. This clearly contains β(I(Y )). If F ∈
I(Y ), then F can be de-homogenized on U0 to give f ∈ I(Y ). It may be the case
that β(f) ̸= F . However, Z(F )∩U0 = φ−1

0 (V (f)) = Z(β(f))∩U0, and Z(β(f))
is the projective closure of V (f), so Z(β(f)) ⊂ Z(F ), and so (F ) ⊂ (β(f)), i.e.
F is generated by β(f). Thus I(Y ) is generated by β(I(Y )).

(b) Let Y ⊆ A3 be the twisted cubic of Exercise I.1.2 (Problem 12.1). Find
generators for I(Y ) and I(Y ), and use this example to show that if f1, ..., fr are
generators of I(Y ), then β(f1), ..., β(fr) are not necessarily generators of I(Y ).

Proof. Write I(Y ) = (x3 − z, x2 − y); we previously wrote it with 3 generators,
but it can also be written with just these two. The curve Y is mapped to the set
of points [1 : t : t2 : t3]. Projectivizing gives the set of points [s3 : s2t : st2 : t3],
so that Y is just Y with an extra point [0 : 0 : 0 : 1]. We can find I(Y ) in singular
by creating the ideal (w − s3, x− s2t, y − st2, z − t3) and then eliminating s, t.
This gives I(Y ) = (x2

2 − x1x3, x1x2 − x0x3, x
2
1 − x0x2). Using mres, we can

see that the minimal number of generators for I(Y ) is 3, so that it cannot be
generated by β(x3 − z), β(x2 − y).
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