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1 On Hecke Operators

Let Mk be the space of modular forms of weight k on PSL2(Z) and Tn, n ≥ 1,
the Hecke operators on Mk. Fix a subspace V ≤Mk, which is stable under the
action of all Tn. Let

H = HC(V ) := C[Tn|V : n ≥ 1]

be the C-algebra generated by the endomorphisms Tn acting on V . Define the
pairing

H× V → C, (T, f) = a1(T (f)),

where a1(g) is the coefficient of q in the q-expansion of g.

Problem 1

Show that the pairing gives an isomorphism H ∼= Hom(V,C). Hence dimH =
dimV .

Proof. We have a map φ : H → Hom(V,C) given by φ(T )(f) = a1(T (f)). Since
T and a1 are linear, so is φ. Now, note that by the relations TmTn = Tmn for
gcd(m,n) = 1 and Tpr−1Tp = Tpr +pk−1Tpr−2 for prime p, any element of H can
be written as a linear combination of Hecke operators, not just compositions of
Hecke operators. Now, suppose T = c1T1 + · · · + cnTn is in kerφ. That is, for
all f ∈ V , we have a1(T (f)) = 0. Since V is a finite dimensional subspace of
Mk, which is a Hilbert space with respect to the Petersson inner product, V
is also a Hilbert space. By the spectral theorem, V has a basis f1, . . . , fd of
(normalized) eigenforms. Now, we have

0 = a1(T (fi)) = a1(c1T1(fi) + · · ·+ cnTn(fi))

= a1(c1a1(fi)fi + · · ·+ cnan(fi)fi)

= (c1a1(fi) + · · ·+ cnan(fi))a1(fi).

Since fi is a normalized eigenform, a1(fi) = 1 ̸= 0, so we have c1a1(fi) + · · ·+
cnan(fi) = 0 for each i. Thus T (fi) = (c1a1(fi) + · · · + cnan(fi))fi = 0. Since
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T is zero on each basis vector, T is zero. Thus, φ is injective.

It follows that H is finite dimensional, and in particular, dimH ≤ dimV . If
dimH = dimV , then φ is an isomorphism. To prove this, we show that ψ :
V → Hom(H,C) given by ψ(f)(T ) = a1(T (f)) is injective. It is linear, since
a1 and T are linear. Now, suppose f ∈ kerψ, i.e. a1(T (f)) = 0 for all T ∈ H.
In particular, a1(Tm(f)) = 0 for all m ≥ 1. But a1(Tm(f)) = am(f) = 0, so
f is constant. Unless k = 0, the only constant modular form is 0, so we are
done in that case. In the case k = 0, Mk = C is one-dimensional, so either
V = 0 or V = C. If V = 0, then since 0 ≤ dimH ≤ dimV = 0, we must have
dimH = 0, so φ is an isomorphism. If V = C, then we can use the fact that H
has the non-zero (identity) element T1 to say 1 ≤ dimH. Since we already have
dimH ≤ dimV = 1, we have dimH = dimV , so φ is an isomorphism.
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Problem 2

Let V = Sk, the subspace of cusp forms. Show that the first d := dimSk Hecke
operators span the space H.

Proof. I’m not sure if we covered this in class, but note that by induction on k
(using ∆Mk−12 = Sk and Mk = CEk ⊕ Sk), there is a basis f1, . . . , fd for Sk

for which ai(fi) = 1 and ai(fj) = 0 for i < j. In particular, this implies that if
f ∈ Sk satisfies ai(f) = 0 for i = 1, . . . , d, then f = 0.

Now, let f1, . . . , fd be a basis of normalized eigenforms. Since dimH = d, the
operators T1, . . . , Td either span H or they are linearly dependent. Suppose the
latter; let c1T1 + · · ·+ cdTd = 0 on Sk, with some cj ̸= 0. Applying both sides
of the equation to the basis elements, we get c1a1(fi) + · · · + cdad(fi) = 0 for
each i. This means that the matrix A with (i, j) component equal to ai(fj)
satisfies cA = 0, where c is the row vector with entries ci. Thus A is not full
rank, so there is some non-zero column vector c′ such that Ac′ = 0. Note that
the ith component of Ac′ is c′1ai(f1) + · · · + c′dai(fd) = ai(c

′
1f1 + · · · + c′dfd).

In particular, the cusp form f = c′1f1 + · · · + c′dfd satisfies ai(f) = 0 for each
i = 1, . . . , d. By the previous observation, this means f = 0. Since the fi are a
basis, this means c′ = 0, a contradiction.
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2 On Congruence Subgroups

Problem 1

Draw/Find a fundamental domain for the groups Γ(2), Γ1(3), and Γ0(4). In
the fundamental domain that you choose, locate the vertices, cusps, and elliptic
points.

Proof. Recall that we can give a fundamental domain by taking the translates
of PSL2(Z) fundamental domain by right coset representatives of the subgroup
in PSL2(Z). We use Sagemath to find right coset representatives for the various
groups (see Problem 3 for the command). For Γ(2) we have(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 −1
1 0

)
,

(
0 −1
1 1

)
,

(
1 −1
1 0

)
,

(
1 0
1 1

)
.

Writing this in terms of the generators S and T , we have I, T, S, ST, TS, TST .
Therefore, the fundamental domain is given as in Figure 1. The cusps can be
seen as the vertices which touch Q∪{∞}. The cusps 0, 1 in Q have been labeled;
there is also a cusp at ∞. They are inequivalent, which can be argued directly

as follows. The result of a matrix

(
a b
c d

)
acting on 0 is b/d. In the case of Γ(2),

b is even and d is odd, so b/d can never be 1 or ∞. Similarly,

(
a b
c d

)
∞ = a/c

is an odd divided by an even, which can never be 0 or 1. The vertices are the
other labeled points, including the cusps. There are no elliptic points, which
can be argued directly as follows. We know that elliptic matrices have trace
bounded in magnitude by the number 2. The diagonal entries of elements in
Γ(2) are both odd, by definition, so the only possible elliptic matrices in Γ(2)

must have trace 0. However, analyzing det

(
2a+ 1 2b
2c −2a− 1

)
= 1 mod 4 gives

−1 ≡ 1 mod 4, a contradiction. Thus, Γ(2) has no elliptic elements, hence no
elliptic points.

For Γ1(3), the right coset representatives are I, S, TST, ST 2. I couldn’t find or
make a good picture that included the ST 2 translation of the standard funda-
mental domain, so I will describe it explicitly. It is also displayed in Figure 2.

We have ST 2 =

(
0 −1
1 2

)
, to the region given by ST 2 will be the hyperbolic

triangle with vertices

−1

i∞+ 2
,

−1
1
2 + i

√
3
2 + 2

,
−1

− 1
2 + i

√
3
2 + 2

,

which simplifies to

0,
−5

14
+ i

√
3

14
,
−1

2
+ i

√
3

6
.
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We note that 0 and −1
2 + i

√
3
6 are also vertices of the ST region, so the ST 2 re-

gion shares an edge with the ST region. Visually, we see that there are cusps at
0, 1, i∞. However, 0 and 1 are equivalent, since T ∈ Γ1(3) and T0 = 1. On the
other hand, the image of ∞ is a non-multiple of 3 divided by a multiple of 3, so
it can’t be 0 or 1. Thus, we have 2 non-equivalent cusps, 0 and ∞. Finally, we
use the MAGMA command EllipticPoints(CongruenceSubgroup(1,3));

to find that there is an elliptic point at 1
2 + i

√
3
6 . This is a T translate of the

point −1
2 + i

√
3
6 , which we earlier identified as a common vertex of the ST and

ST 2 regions. Both of these points have been marked separately, despite being
equivalent. The order of this elliptic point is 3, since the Sagemath command
Gamma1(3).nu2() shows that there are no elliptic points of order 2.

For Γ0(4), the right coset representatives are I, S, TST, ST 2, ST 3, ST−2S3. I
will make no attempt to illustrate or list out the vertices for this one, but I will
point out that all of the regions except TST are have absolute value of the real
part bounded by 1/2. We can argue directly to show that there are no elliptic

points as follows. Analyzing det

(
a b
c d

)
= 1 mod 4, for

(
a b
c d

)
∈ Γ0(4), shows

that ad ≡ 1 mod 4. This is only possible if a ≡ d mod 4 and a ≡ d ≡ 1 mod 2.
In particular, a + d ≡ 2 mod 4, so |a + d| cannot be less than 2. Thus, Γ0(4)
has no elliptic elements, hence no elliptic points. We fully rely on Sagemath for
the cusps. In particular, list(Gamma0(4).cusps()) returns

[0, 1/2, Infinity] , meaning that there are three non-equivalent cusps at

0, 1/2,∞.
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Figure 1: Fundamental domain for Γ(2).
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Figure 2: Fundamental domain for Γ1(3).
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Problem 2

Is the congruence subgroup Γ(2) conjugate to Γ0(4) in SL2(R)? Justify your
answer.

Proof. Yes, they are conjugate. Let g =

(√
2 0

0 1/
√
2

)
. We claim that Γ(2) =

gΓ0(4)g
−1. It suffices to show that the conjugates of generators of Γ0(4) are

generators of Γ(2). Using the Sagemath command Gamma0(4).gens() , we

see that Γ0(4) is generated by

(
1 1
0 1

)
,

(
3 −1
4 −1

)
, and

(
−1 0
0 −1

)
. Similarly,

Γ(2) is generated by

(
1 2
0 1

)
,

(
3 −2
2 −1

)
, and

(
−1 0
0 −1

)
. Since −I is a scalar

matrix, it is conjugation invariant. We have(√
2 0

0 1/
√
2

)(
1 1
0 1

)(
1/
√
2 0

0
√
2

)
=

(√
2

√
2

0 1/
√
2

)(
1/
√
2 0

0
√
2

)
=

(
1 2
0 1

)
,(√

2 0

0 1/
√
2

)(
3 −1
4 −1

)(
1/
√
2 0

0
√
2

)
=

(
3
√
2 −

√
2

4/
√
2 −1/

√
2

)(
1/
√
2 0

0
√
2

)
=

(
3 −2
2 −1

)
.

Thus Γ(2) = gΓ0(4)g
−1 as desired.
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Problem 3

Find a set of right coset representatives of the following subgroups in PSL2(Z):
Γ0(6) and Γ1(6).

Proof. The Sagemath commands list(Gamma0(6).coset_reps()) and

list(Gamma1(6).coset_reps()) compute right coset representatives in SL2(Z).
To get right coset representatives in PSL2(Z), we just ignore the representatives
that are the negative of another representative. For Γ0(6) we also have(

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 0
1 1

)
,

(
0 −1
1 2

)
,

(
0 −1
1 3

)
,

(
0 −1
1 4

)
,(

0 −1
1 5

)
,

(
1 0
2 1

)
,

(
1 1
2 3

)
,

(
1 2
2 5

)
,

(
1 0
3 1

)
,

(
−1 −1
3 2

)
.

For Γ1(6) we have(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 0
1 1

)
,

(
0 −1
1 2

)
,

(
0 −1
1 3

)
,

(
0 −1
1 4

)
,(

0 −1
1 5

)
,

(
1 0
2 1

)
,

(
1 1
2 3

)
,

(
1 2
2 5

)
,

(
1 0
3 1

)
,

(
−1 −1
3 2

)
.

Note that it makes sense for them to have the same number of distinct cosets,
because [Γ0(6) : Γ1(6)] = 6(1− 1/2)(1− 1/3) = 2, and Γ0(6) contains −I while
Γ1(6) doesn’t.
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Problem 4

Let p be a prime. Find a set of right coset representatives of Γ0(p) in PSL2(Z).

Proof. By the index formula, and since −I ∈ Γ0(p), we know that there will
be p(1 + 1/p) = p + 1 distinct cosets. We claim that there are distinct coset

representatives given by

(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
0 −1
1 1

)
, . . . ,

(
0 −1
1 p− 1

)
. None

of the last p are equivalent to the identity, since they are not in Γ0(p), since
1 ̸≡ 0 mod p. Now, using the proposition on slide 12 of the modular group
class slides, two matrices are in the same right coset of Γ0(p) iff c1d2 ≡ c2d1
mod p, where ci, di represent the second row of the two matrices. In the last p
matrices, we have c1 = c2 = 1, so two matrices from the last p matrices in our
list are in the same right coset iff their bottom right entries are equivalent mod
p. Since 0, 1, . . . , p − 1 are not equivalent mod p, these matrices are not in the
same right coset. Thus we have p+1 matrices in different cosets, so we have all
of them.
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Problem 5

Let G be a finite-index subgroup of Γ = SL2(Z). For a given cusp s, let Gs be
the isotropy subgroup of G at s. Show that

(a) width(s) = [Γs : Gs], and it does not depend on the choice of the represen-
tative of the cusp or the choice of element σ ∈ SL2(Z) such that σ∞ = s.

(b) If {γ1, . . . , γm} is a system of representatives of right cosets G \ Γ, then
[Γ∞ : G∞] equals the number of j such that γj∞ = g∞ for some g ∈ G.

(c) If {s1, . . . , sν∞} is a system of representatives of the cusps of G and if {wj}

denotes their cusp widths, then
ν∞∑
j=1

wj = [Γ : G]. Moreover, if G◁PSL2(Z),

then all the widths are equal.

(d) If G1 ≤ G2 are subgroups of SL2(Z), then widthG2(s) | widthG1(s).

Proof. (a) We first show that width(s) is independent of σ. First suppose
s = ∞. σ∞ = ∞ means that σ is upper triangular. The only upper
triangular matrices in SL2(Z) are ±Tn. Thus ±σTmσ−1 = ±Tn+m−n

= ±Tm, so width(∞) is independent of σ. Now let σ1∞ = σ2∞ = s.
Then σ−1

1 σ2∞ = ∞, so σ−1
1 σ2 = ±Tn, or σ2 = ±σ1Tn. Thus ±σ2Tmσ−1

2

= ±σ1Tn+m−nσ−1
1 = ±σ1Tmσ−1

1 , so width(s) is independent of σ.

Now we show that width(s) = width(gs) for g ∈ G. If σ∞ = s, then
gσ∞ = gs. Now, ±gσTmσ−1g−1 is in G iff ±σTmσ−1 is in G, so width(s) =
width(gs) as desired. In other words, width is independent of the choice of
representative of the cusp.

Next, we show that width(∞) = [Γ∞ : G∞]. Note that Γ∞ is the infinite
cyclic group, generated by T . It follows that G∞ is cyclic and generated by
some Tm. Note that G∞ is not the trivial group; since G is finite index in Γ,
by the pigeonhole principle there are integers a, b with b > a > 0 such that
T a and T b are in the same coset, which means T b−a is in G. Thus G∞ is
generated by Tm for m > 0; m is precisely the smallest positive integer such
that ±Tm ∈ G, so m = width(∞). On the other hand, [⟨T ⟩ : ⟨Tm⟩] = m,
so width(∞) = [Γ∞ : G∞].

Finally, we show that width(s) = [Γs : Gs]. Let σ∞ = s. Note that αs = s
iff σ−1ασ∞ = ∞; thus Γs is infinite cyclic and generated by Tσ = σTσ−1.
By the same logic as before, if m is the smallest positive integer such that
±Tm

σ = ±σTmσ−1 ∈ G, then Γs is generated by Tm
σ and [Γs : Gs] = m. In

other words, width(s) = [Γs : Gs] as desired.

(b) Let Γ∞ = ⟨T ⟩ act on G \ Γ by right multiplication; we can also think of
this action on {γ1, . . . , γm}. Of course, γiT

n need not be equal to any
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γj , but there will be a unique γj such that GγiT
n = Gγj . Now, suppose

γ1 ∈ G represents the trivial coset. Then γ1∞ = g∞ for some g ∈ G,
namely g = γ1. Furthermore, for any γj in the Γ∞-orbit of γ1, we have
γj∞ = gγ1T

n∞ = g′∞ for some g, g′ ∈ G. Conversely, suppose γj∞ = g∞
for some g ∈ G. Then g−1γj ∈ Γ∞, say g−1γj = Tn. Then g−1γjT

−n = I
impliesGγjT

−n = Gγ1, so that γj is in the Γ∞-orbit of γ1. Thus, the desired
statement says that [Γ∞ : G∞] = |Γ∞ ·γ1|. By the orbit-stabilizer theorem,
it suffices to show that the stabilizer of γ1 is G∞. Indeed, Gγ1T

n = Gγ1,
i.e. GTn = G, is equivalent to Tn ∈ G. Thus, the stabilizer of γ1 is
Γ∞ ∩G = G∞.

(c) By the proposition on slide 14 of the modular group slides, the cusps all
come from coset representatives acting on ∞. In particular, we can order
the coset representatives {γ1, . . . , γm} so that si = γi∞ for i = 1, . . . , ν∞.
We will generalize part b as follows. For each i = 1, . . . , ν∞, let Si be the
subset of {γ1, . . . , γm} consisting of γj such that γj∞ = gsi for some g ∈ G.
Then the Si are disjoint, since the si are not equivalent. We will show that
|Si| = width(si); the desired equality immediately follows. Note that part
b treats the case of the trivial coset. The argument is essentially the same;
we will show that Γsi = ⟨γiTγ−1

i ⟩ = ⟨Ti⟩ acts on {γ1, . . . , γm} such that
the orbit of γi is Si and the stabilizer of γi is Gsi . Indeed, let Γsi act on
G \ Γ not by right multiplication, but instead by Tn

i ·Gγj = GγjT
n. Con-

sider also the induced action on {γ1, . . . , γm}. If γj ∈ Γsi · γi, then γj∞
= gγiT

n∞ = gsi for some g ∈ G. Conversely, if γj∞ = gsi = gγi∞, then
γ−1
i g−1γj = Tn for some n, so Gγj = GγiT

n. Thus, Γsi · γi = Si. Next,
GγiT

n = Gγi is equivalent to γiT
nγ−1

i = g for some g ∈ G. The left hand
side is Tn

i , so this says Tn
i fixes γi iff Tn

i ∈ G ∩ Γsi = Gsi . Thus, by the
orbit-stabilizer theorem, width(si) = |Si|, and we are done.

Now suppose G ◁ PSL2(Z). Then σTnσ−1 ∈ G iff Tn ∈ G, which shows
that width(σ∞) = width(∞) for all σ ∈ PSL2(Z). Since all cusps are
equivalent over PSL2(Z), this shows that all cusps have the same width in
this case.

(d) We have widthG1
(s)/widthG2

(s) = [Γs : G1,s]/[Γs : G2,s] = [G2,s : G1,s] by
basic group theory.
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