MATH 7230 Homework 4

Andrea Bourque

March 17, 2024

Problem 1

For $k \ge 4$ even, define $F_k = \frac{-B_k}{2k}E_k = \sum_{n\ge 0} b_n q^n$, so that in particular $b_1 = 1$ and $b_n = \sigma_{k-1}(n)$ for $n \ge 2$. Prove that these b_n satisfy the following:

- (a) For gcd(m, n) = 1, we have $b_{mn} = b_m b_n$.
- (b) For p prime and $r \ge 2$, we have $b_{p^r} = b_{p^{r-1}}b_p p^{k-1}b_{p^{r-2}}$.
- *Proof.* (a) A basic number theory fact is that if d is a positive divisor of mn where gcd(m,n) = 1, then d can be uniquely written in the fg where f, g > 0, f|m, and g|n. This follows immediately from writing out the prime factorizations of m and n. Thus,

$$b_{mn} = \sigma_{k-1}(mn) = \sum_{d|mn} d^{k-1} = \sum_{f|m} \sum_{g|n} (fg)^{k-1}$$
$$= \sum_{f|m} f^{k-1} \sum_{g|n} g^{k-1} = \sigma_{k-1}(m) \sigma_{k-1}(n) = b_m b_n.$$

(b) The positive divisors of a prime power p^r are just $1, p, \ldots, p^j, \ldots, p^r$. Thus

$$b_{p^r} = \sigma_{k-1}(p^r) = \sum_{j=0}^r (p^j)^{k-1} = \sum_{j=0}^r (p^{k-1})^j = \frac{p^{(r+1)(k-1)} - 1}{p^{k-1} - 1},$$

$$b_{p^{r-1}}b_p - p^{k-1}b_{p^{r-2}} = (1+p^{k-1})\frac{p^{r(k-1)} - 1}{p^{k-1} - 1} - p^{k-1}\frac{p^{(r-1)(k-1)} - 1}{p^{k-1} - 1}.$$

To show these quantities are equal, we first multiply both quantities by $p^{k-1} - 1 \neq 0$. In particular, the second quantity gives

$$(1+p^{k-1})(p^{r(k-1)}-1) - p^{k-1}(p^{(r-1)(k-1)}-1)$$

= $p^{\underline{r(k-1)}} - 1 + p^{(r+1)(k-1)} - p^{k-1} - p^{\underline{r(k-1)}} + p^{k-1}$
= $p^{(r+1)(k-1)} - 1$,

which is exactly $(p^{k-1}-1)b_{p^r}$.

Problem 2

Compute $T_2(E_4^3)$ in terms of E_4^3 and Δ .

Proof. Since E_{12} and Δ are a basis for M_{12} , we can write E_4^3 in terms of them. Furthermore, since they are eigenforms, this will make it easy to compute T_2 . Clearly $a_0(E_{12}) = 1 = a_0(E_4^3)$, so $E_4^3 = E_{12} + c\Delta$ for some c. In particular, $a_1(E_4^3) = a_1(E_{12}) + a_1(c\Delta)$. We have $a_1(E_4^3) = 3a_1(E_4) = 720$, $a_1(E_{12}) = 65520/691$, and $a_1(c\Delta) = c$. Thus c = 720 - 65520/691 = 432000/691. I will keep using the variable c until the end. Now, $T_2(E_12) = \sigma_{11}(2)E_{12} = 2049E_{12}$ and $T_2(c\Delta) = c\tau(2)\Delta = -24c\Delta$. Thus $T_2(E_4^3) = 2049E_{12} - 24c\Delta$. But $E_{12} = E_4^3 - c\Delta$, so $T_2(E_4^3) = 2049E_4^3 - 2073c\Delta$. Miraculously, $2073 = 3 \cdot 691$, so we have

$$T_2(E_4^3) = 2049E_4^3 - 1296000\Delta.$$

Problem 3

Compute a Hecke eigenbasis for S_{24} through the following steps:

- (a) Show that $f_1 = \Delta^2$ and $f_2 = E_4^3 \Delta$ form a basis for S_{24} .
- (b) Our normalized eigenforms must take the form $g = f_2 + \lambda f_1$ (no coefficient on f_2 is needed because $a_1(f_2) = 1$ while $a_1(f_1) = 0$). Use this and the first few coefficients of E_4 and Δ to compute $a_2(g)$ and $a_4(g)$ in terms of λ .
- (c) Use the above calculation and the Hecke relation $T_4 = T_2^2 2^{23}T_1$ to solve for λ .
- *Proof.* (a) We have seen that $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$. In the previous problem, we showed that $E_4^3 = E_{12} + c\Delta$ for some $c \in \mathbb{C}$, so $M_{12} = \mathbb{C}E_4^3 \oplus \mathbb{C}\Delta$. We previously showed that multiplication by Δ gives an isomorphism $M_{k-12} \to S_k$; this gives the desired claim.
- (b) We have

$$a_2(g) = a_2(f_2) + a_2(\lambda f_1) = \lambda - 24 + 720 = \lambda + 696.$$

To avoid a mistake in the computation of $a_4(g)$, let us write things out rather explicitly. We need $a_4(\Delta^2)$ and $a_4(E_4^3\Delta)$. Set $\delta = \Delta/q$. Then $a_4(\Delta^2) = a_2(\delta^2)$ and $a_4(E_4^3\Delta) = a_3(E_4^3\delta)$. We have

$$\delta^2 = \left(1 - 24q + 252q^2 + O(q^3)\right)^2 = 1 - 48q + (504 + 576)q^2 + O(q^3),$$

so $a_4(f_1) = 504 + 576 = 1080$. To expand f_2 , we will go two series at a time, each time taking only up to order q^3 . To conserve space, I will omit the $O(q^4)$. We have

$$E_4^2 = \left(1 + 240q + 2160q^2 + 6720q^3\right)^2$$

= 1 + 480q + (2 * 2160 + 240²)q² + (2 * 6720 + 2 * 240 * 2160)q³
= 1 + 480q + 61920q² + 1050240q³.

Then

$$\begin{split} E_4^3 &= (1+480q+61920q^2+1050240q^3)(1+240q+2160q^2+6720q^3) \\ &= 1+720q+(240*480+2160+61920)q^2 \\ &+ (6720+2160*480+240*61920+1050240)q^3 \\ &= 1+720q+179280q^2+16954560q^3. \end{split}$$

Finally,

$$a_4(f_2) = a_3 \left((1 + 720q + 179280q^2 + 16954560q^3)(1 - 24q + 252q^2 - 1472q^3) \right)$$

= -1472 + 720 * 252 - 24 * 179280 + 16954560 = 12831808.

Therefore, $a_4(g) = 1080\lambda + 12831808$.

(c) Applying $T_4 = T_2^2 - 2^{23}T_1$ to g gives $a_4(g) = a_2(g)^2 - 2^{23}$. In terms of λ , we have

$$1080\lambda + 12831808 = (\lambda + 696)^2 - 2^{23} = \lambda^2 + 1392\lambda - 7904192;$$

$$\lambda^2 + 312\lambda - 20736000 = 0;$$

$$(\lambda + 156)^2 = 20760336;$$

$$\lambda \in \{-156 + 12\sqrt{144169}, -156 - 12\sqrt{144169}\}.$$

These two values of λ give us the two forms for a Hecke eigenbasis for $S_{24}.$ $\hfill\square$