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Problem 1

Show that for k ≥ 2,∑
(m,n)∈Z2

gcd(m,n)=1

1

(mτ + n)2k
=

1

ζ(2k)

∑
(m,n)∈Z2

(m,n) ̸=(0,0)

1

(mτ + n)2k
.

Proof. Since the series defining G2k(τ) is absolutely convergent, we can rear-
range by gcd:

G2k(τ) =
∑

(m,n)∈Z2

(m,n) ̸=(0,0)

1

(mτ + n)2k
=
∑
d≥1

∑
(m,n)∈Z2

gcd(m,n)=d

1

(mτ + n)2k
.

The set of pairs (m,n) ∈ Z2 with gcd(m,n) = d is in bijection with the set of
pairs (m,n) ∈ Z2 with gcd(m,n) = 1 by taking m 7→ dm and n 7→ dn. Thus:

G2k(τ) =
∑
d≥1

∑
(m,n)∈Z2

gcd(m,n)=1

1

(dmτ + dn)2k
=
∑
d≥1

1

d2k

∑
(m,n)∈Z2

gcd(m,n)=1

1

(mτ + n)2k

= ζ(2k)
∑

(m,n)∈Z2

gcd(m,n)=1

1

(mτ + n)2k
.

Thus the claim is true.
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Problem 2

Show that M14(Γ) = CE14, and that E14 = E6E8 = E6E
2
4 .

Proof. By the dimension formula, dimM14(Γ) = 1. Since E14 is a non-zero
element of M14(Γ), we must have M14(Γ) = CE14. Now, E6E8 and E6E

2
4 are

also non-zero elements of M14(Γ), so they are scalar multiples of E14. But
Ek(i∞) = 1 for all even k ≥ 4, and 1 = 1 · 1 = 1 · 12, so we must have
E14 = E6E8 = E6E

2
4 .
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Problem 3

Using the decomposition Mk(Γ) = Sk(Γ)⊕CEk, show that every modular form
for Γ = SL2(Z) can be expressed as a polynomial in E4 and E6.

Proof. We have shown explicitly that the result is true up to k = 6. For k = 8
and k = 10, the result is true since E8 = E2

4 and E10 = E4E6, andM8(Γ) = CE8

and M10(Γ) = CE10. We continue by induction; assume the result is true for
k < N . We know that SN (Γ) = ∆MN−12(Γ), and ∆ is a polynomial in E4

and E6 by definition, so elements of SN (Γ) are polynomials in E4 and E6 by
the inductive hypothesis. Furthermore, EN = E2

6EN−12, since both sides are
non-zero non-cusp modular forms of weight k, the space of such forms is one-
dimensional, and both sides have the same value of 1 at i∞. By induction,
EN−12 is a polynomial in E4 and E6, which implies E2

6EN−12 is as well. Since
SN (Γ) and CEN consist of polynomials in E4 and E6, we have MN (Γ) consists
of polynomials in E4 and E6.
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Problem 4

Let

D =
1

2πi

d

dτ
= q

d

dq
.

(a) Using the transformation property for E2, show that

D(E2)−
1

12
E2

2 = − 1

12
E4.

(b) Deduce the Ramanujan formula

DE2 =
E2

2 − E4

12
.

(c) Show similarly that

DE4 =
E2E4 − E6

3
,

DE6 =
E2E6 − E2

4

2
.

Proof. (a) Call the expression on the left-hand side L. We will show that L ∈

M4. Thus, we will show L = L|4γ, where γ =

(
a b
c d

)
∈ SL2(Z). We have

L|4γ = D(E2)|4γ − 1

12
E2

2 |4γ.

Using the lemma from lecture that concerns D and slash operator, we have

D(E2)|4γ = D(E2|2γ) +
2

2πi

c

cτ + d
E2|2γ.

Now, note that f2|2kγ = (f |kγ)2, since unraveling the definition on both
sides gives

f2(τ)(cτ + d)−2k = (f(τ)(cτ + d)−k)2.

Thus

− 1

12
E2

2 |4γ = − 1

12
(E2|2γ)2.

In total, we have

L|4γ = D(E2|2γ)−
ic

π(cτ + d)
E2|2γ − 1

12
(E2|2γ)2.
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Now, we know E2|2γ = E2 −
6ic

π(cτ + d)
. We substitute this in and do some

algebra:

L|4γ = D(E2)−
6ic

π
D

(
1

cτ + d

)
− ic

π(cτ + d)
E2 −

6c2

π2(cτ + d)2
− 1

12

(
E2 −

6ic

π(cτ + d)

)2

= D(E2) +
6ic

π

1

2πi

c

(cτ + d)2
− ic

π(cτ + d)
E2 −

6c2

π2(cτ + d)2
− 1

12

(
E2 −

6ic

π(cτ + d)

)2

= D(E2)−
��

����3c2

π2(cτ + d)2
−
H

HHH
HH

ic

π(cτ + d)
E2 −

1

12
E2

2 +
H
HHH

HH

ic

π(cτ + d)
E2 +

��
����3c2

π2(cτ + d)2

= D(E2)−
1

12
E2

2 = L.

Finally, L is holomorphic because E2 and thus D(E2) are holomorphic.
Thus, L ∈ M4. Of course, the right hand side is in M4 = CE4, and is the
unique element of M4 whose constant Fourier coefficient is −1/12. It then
suffices to look at the constant Fourier coefficient of the left hand side. The
D(E2) term will not contribute, since it multiplies a power series with no
negative powers of q by q. Since the constant term of E2 is 1, it follows that
the constant term of L is − 1

12 · 12 = −1/12. This completes the proof.

(b) Add E2
2/12 to both sides of the equation.

(c) We proceed similarly. Since M6 = CE6 and M8 = CE8, and E2
4 = E8, it

suffices to show that DE4 − E2E4/3 ∈ M6 and DE6 − E2E6/2 ∈ M8, and
that their constant Fourier coefficients are −1/3 and −1/2, respectively. Let

γ =

(
a b
c d

)
∈ SL2(Z). Then

D(E4)|6γ = D(E4|4γ) +
4

2πi

c

cτ + d
E4|4γ

= D(E4)−
2ic

π(cτ + d)
E4,

and

(E2E4)|6γ = E2|2γE4|4γ = E2|2γE4

=

(
E2 −

6ic

π(cτ + d)

)
E4 = E2E4 −

6ic

π(cτ + d)
E4.

Thus,(
DE4 −

1

3
E2E4

)
|6γ = DE4 −

2ic

π(cτ + d)
E4 −

1

3
E2E4 +

2ic

π(cτ + d)
E4

= DE4 −
1

3
E2E4.
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Since E2, E4 are holomorphic, so is DE4 − E2E4/3. To conclude DE4 −
E2E4/3 = −E6/3, we must show that the constant Fourier coefficient of
DE4 − E2E4/3 is −1/3. As in part (a), DE4 contributes nothing to the
constant coefficient, while the constant coefficients of E2 and E4 are both
one, so the constant coefficient of −E2E4/3 is indeed −1/3.

Now we do the same thing for DE6 − E2E6/2.

D(E6)|8γ = D(E6|6γ) +
6

2πi

c

cτ + d
E6|6γ

= D(E6)−
3ic

π(cτ + d)
E6,

and

(E2E6)|8γ = E2|2γE6|6γ = E2|2γE6

=

(
E2 −

6ic

π(cτ + d)

)
E6 = E2E6 −

6ic

π(cτ + d)
E6.

Thus(
DE6 −

1

2
E2E6

)
|8γ = DE6 −

3ic

π(cτ + d)
E6 −

1

2
E2E4 +

3ic

π(cτ + d)
E6

= DE6 −
1

2
E2E6.

Once again, this is holomorphic, so it is in M8. As before, DE6 has 0
constant Fourier coefficient, whereas the constant Fourier coefficients of E2

and E6 are both 1; thus DE6 − E2E6/2 has a constant Fourier coefficient
of −1/2, meaning it is equal to −E8/2 = −E2

4/2.
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Problem 5

Let τ(n) be the nth coefficient of the Fourier expansion of ∆. Prove that
τ(n) ≡ σ11(n) mod 691 by showing that

691

65520
E12 −∆ =

691

112320
E3

4 +
691

157248
E2

6 .

Proof. First, assume that the above equation is true. Since E4 and E6 have inte-
ger coefficients in their Fourier expansions, and 112320 and 157248 are invertible
mod 691, it follows that the right hand side of the equation has each Fourier
coefficient equivalent to 0 mod 691. On the other hand, using B12 = −691

2730 , we
have

691

65520
E12(q) =

691

65520
− 691

65520
(24)

(
−2730

691

)( ∞∑
n=1

σ11(n)q
n

)

=
691

65520
+

∞∑
n=1

σ11(n)q
n.

The constant coefficient vanishes mod 691, which aligns with the fact that
τ(0) = 0. For n > 0, we get σ11(n)− τ(n) on the left hand side of the equation
in the problem statement, and as we said earlier, 0 mod 691 on the right hand
side. Thus, the congruence is true.

Now, to prove the relation between E4, E6, E12, and ∆, it suffices to show that
the constant and q coefficients of the left and right hand side agree. Indeed,
since M12 = S12 ⊕ CE12 = C∆⊕ CE12, if f ∈ M12 has f(q) = a+ bq + O(q2),
then f = aE12 + (b− ac)∆, where c is the q coefficient of E12(q). The constant
coefficient of the left hand side is 691

65520 − 0, and the constant coefficient of the
right hand side is 691

112320 + 691
157248 . One can check explicitly that these numbers

are equal. The q coefficient of the left hand side is σ11(1) − τ(1) = 1 − 1 = 0,
and the q coefficient of the right hand side is

691

112320
(3)

(
−8

−1/30

)
+

691

157248
(2)

(
−12

1/42

)
=

691

156
− 691

156
= 0.

Note that we have used the fact that (1+aq+O(q2))n = 1+naq+O(q2), which
explains the appearance of the factors of 3 and 2. We have also used the explicit
values of B4 and B6. Since the left and right hand side have equal constant and
q coefficients of their Fourier expansions, they are equal, so we are done.
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