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Problem 1

For any γ =

(
a b
c d

)
∈ SL2(R), define the function jγ(τ) = cτ + d. Show that

(a) jγ1γ2(τ) = jγ1(γ2τ)jγ2(τ).

(b) γτ − γz = (τ − z)jγ(τ)
−1jγ(z)

−1.

(c) d(γτ) = jγ(τ)
−2dτ .

(d) |jγ(τ)|2Im(γτ) = Im(τ).

Proof. (a) We expand both sides. Let γi =

(
ai bi
ci di

)
. Then

γ1γ2 =

(
− −

a2c1 + c2d1 b2c1 + d1d2

)
,

and in particular,

jγ1γ2(τ) = (a2c1 + c2d1)τ + b2c1 + d1d2.

On the other hand,

jγ1
(γ2τ)jγ2

(τ) = (c1γ2τ + d1)(c2τ + d2)

=

(
c1

a2τ + b2
c2τ + d2

+ d1

)
(c2τ + d2)

= c1(a2τ + b2) + d1(c2τ + d2)

= (a2c1 + c2d1)τ + b2c1 + d1d2 = jγ1γ2
(τ).

(b) Let us compare both sides in more detail. The claim is that

aτ + b

cτ + d
− az + b

cz + d
=

τ − z

(cτ + d)(cz + d)
.
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Equivalently, after multiplying both sides by jγ(τ)jγ(z), the claim is that

(aτ + b)(cz + d)− (cτ + d)(az + b) = τ − z.

Expanding and simplifying the left hand side gives

acτz + adτ + bcz + bd− acτz − bcτ − adz − bd

= (ad− bc)τ − (ad− bc)z.

Since γ ∈ SL2(R), we have ad− bc = 1, so the claim is true.

(c) We have

d

dτ

(
aτ + b

cτ + d

)
=

a

cτ + d
− c(aτ + b)

(cτ + d)2

=
acτ + ad− acτ − bc

(cτ + d)2
=

ad− bc

(cτ + d)2
.

Once again, since γ ∈ SL2(R), we have ad − bc = 1, so we get the desired
claim.

(d) Write τ = x+ yi. Then

γτ =
ax+ ayi+ b

cx+ cyi+ d
=

(ax+ b+ ayi)(cx+ d− cyi)

|jγ(τ)|2
,

so

Im(γτ) =
(ax+ b)(−cy) + (ay)(cx+ d)

|jγ(τ)|2

=
−acxy − bcy + acxy + ady

|jγ(τ)|2
=

(ad− bc)Im(τ)

|jγ(τ)|2
.

Since ad− bc = 1, we have the desired claim.
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Problem 2

For any point τ ∈ H, write τ = x+ iy with x, y ∈ R and y > 0. Show that the
differential form ds2 = (dx2 + dy2)/y2 is invariant under the action of SL2(R).

Proof. Note that we can write ds2 = dτdτ/y2. For γ ∈ SL2(R), we have
γτ = γτ , since the entries of γ are real. Using parts (c) and (d) of Problem 1,
we have

d(γs)2 =
d(γτ)d(γτ)

Im(γτ)2
=

jγ(τ)
−2dτjγ(τ)

−2dτ

Im(τ)2|jγ(τ)|−4

=
|jγ(τ)|4

jγ(τ)2jγ(τ)2
ds2.

We are reduced to showing |jγ(τ)|4 = jγ(τ)
2jγ(τ)

2. This is clear, since jγ(τ) =

cτ + d = cτ + d = jγ(τ).
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Problem 3

Show that every elliptic point of order 3 of PSL2(Z) \H is equivalent to eπi/3.

Proof. Assume for now the claim in the notes that every order 3 elliptic ele-

ment of PSL2(Z) is conjugate to either

(
0 −1
1 −1

)
or

(
−1 1
−1 0

)
. Note this basic

fact: If x is fixed by MLM−1, then M−1x is fixed by L. Indeed, LM−1x =
M−1MLM−1x = M−1x. In other words, the fixed points of conjugate elements

are in the same orbit. We can therefore study the fixed points of

(
0 −1
1 −1

)
and(

−1 1
−1 0

)
and show that they are equivalent to ρ := eπi/3.

Case 1: τ ∈ H is fixed by

(
0 −1
1 −1

)
, so τ =

−1

τ − 1
. Rearranging gives

τ2 − τ + 1 = 0, which has one solution in H, namely ρ.

Case 2: τ ∈ H is fixed by

(
−1 1
−1 0

)
. Then τ =

−τ + 1

−τ
. Rearranging give

τ2 − τ + 1 = 0 again, so τ = ρ.

We now show that every order 3 elliptic element of PSL2(Z) is conjugate to

either

(
0 −1
1 −1

)
or

(
−1 1
−1 0

)
. We know that an elliptic element must have

trace with absolute value less than 2. Since the trace of an integer matrix is an
integer, the only possibilities are −1, 0, 1. The trace zero case gives order 2:(

a b
c −a

)2

=

(
a2 + bc 0

0 a2 + bc

)
=

(
−1 0
0 −1

)
≡

(
1 0
0 1

)
.

By multiplying by −id, we can assume that the trace of our matrix is −1 (and we

work in SL2(Z) from now on). Thus, we start with some matrix

(
a b
c −a− 1

)
.

Notice that if b = 0, then we would have 1 = −a2 − a as the determinant, but
the roots of x2+x+1 are not integers. Thus b ̸= 0. We claim that if b > 0, then

our matrix is conjugate to

(
−1 1
−1 0

)
, and if b < 0, then our matrix is conjugate

to

(
0 −1
1 −1

)
. I will assume b > 0 and withhold the proof for b < 0, since it is

very similar (but just as long).

The proof is long, so let me start with an outline. We will exploit the fact that

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL2(Z). In particular, to show that

two matrices are conjugates in SL2(Z), we can apply sequences of conjugation

by S±1 or T±1. We will first show that all matrices

(
a 1
c −a− 1

)
∈ SL2(Z) are
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conjugate to each other, and then show that for a = 0,

(
0 1
c −1

)
is conjugate

to

(
−1 1
−1 0

)
. Then, we will strongly induct on b; if we start with some matrix(

a b
c −a− 1

)
with b > 1, we can find some

(
a′ b′

c′ −a′ − 1

)
conjugate to it with

0 < b′ < b, and by induction, this matrix will be conjugate to

(
−1 1
−1 0

)
.

If

(
a 1
c −a− 1

)
∈ SL2(Z), then c = −a2 − a − 1, so the matrix is determined

by a; let’s call it Ma. We will show that Ma is conjugate to Ma+1 and Ma−1,

which will imply that it is conjugate to M0 =

(
0 1
−1 −1

)
. Indeed, it can be

verified that

Ma+1 = STSMaS
−1T−1S−1,

Ma−1 = ST−1SMaS
−1TS−1.

Thus any Ma is conjugate to M0. Furthermore, one can verify that SM0S
−1 =(

−1 1
−1 0

)
. Thus, all matrices

(
a 1
c −a− 1

)
in SL2(Z) are conjugate to

(
−1 1
−1 0

)
.

Now consider M =

(
a b
c −a− 1

)
with b > 1. We will show that it is conjugate

to some

(
a′ b′

c′ −a′ − 1

)
with 0 < b′ < b. More precisely, we will show that there

is an integer n such that T−1STnSMS−1T−nS−1T has its top right entry pos-
itive and less than b.

We will work backwards; let us consider what conditions on M would imply
that T−1MT has its top right entry positive and less than b. We have

T−1MT =

(
∗ 2a+ b− c+ 1
∗ ∗

)
,

so we want 0 < 2a + b − c + 1 < b. Since detM = −a2 − a − bc = 1, we can
rewrite the first inequality as

0 < 2a+ b+
a2 + a+ 1

b
+ 1.

Since b is positive, we can multiply both sides by b to get

0 < 2ab+ b2 + a2 + a+ 1 + b = (a+ b)2 + (a+ b) + 1.

This is true because x2 + x+ 1 > 0 for all real x. The second inequality can be
rewritten as

2a+
a2 + a+ 1

b
+ 1 < 0.
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Since a2 + a+ 1 > 0 and b > 0, this is equivalent to

b(2a+ 1)

a2 + a+ 1
< −1.

This inequality is not always true, as can be shown by choosing a = −8, b = 3.
However, we will show that M is conjugate to some matrix whose top left and
top right entries (as a and b, resp.) satisfy this inequality. We have

STnSMS−1T−nS−1 =

(
a+ nb b

∗ ∗

)
.

We will show that there exists an integer n such that

b(2(a+ nb) + 1)

(a+ nb)2 + (a+ nb) + 1
< −1.

From our work above, this will imply that the top right entry of
T−1STnSMS−1T−nS−1T is positive and less than b. Now, we rearrange the
above inequality, again using that x2 + x + 1 > 0 for real x, and in particular
for x = a+ nb:

b2n2 + (2b2 + 2ab+ b)n+ (2ab+ b+ a2 + a+ 1) < 0.

If we can show that the roots of the quadratic b2x2 + (2b2 + 2ab+ b)x+ (2ab+
b+a2+a+1) are real and are a distance greater than 1 apart, we will be done;
any open interval of length greater than 1 contains an integer, so we can choose
n to be an integer between the roots. The difference of the roots is√

(2b2 + 2ab+ b)2 − 4b2(2ab+ b+ a2 + a+ 1)

b2
.

The inside of the square root simplifies tremendously, giving 4b4 − 3b2. Since
b > 1, we have b2 > 0 and 4b2 − 3 > 0 since both x2 and 4x2 − 3 are increasing
functions and positive at b = 1. Thus, the roots are real. It remains to show

√
4b4 − 3b2

b2
> 1.

Since everything in sight is positive, we can safely square both sides and rear-
range to get 3b2 − 3 > 0, which is true since b > 1.

In case it isn’t clear, let me also prove the claim that an open interval of length
greater than 1 contains an integer. Say the open interval is (α, β), and that
β − α > 1. If α is not an integer, then we can take n = ⌈α⌉. Indeed, by
definition, α ≤ n, but it can’t be equal since α /∈ Z, and n < α + 1 < β, since
otherwise n− 1 would be a smaller integer ≥ α, contradicting the definition of
n. If α is an integer, then α+ 1 is an integer in (α, β).

To recap:

6



1. We began by showing that an elliptic element of order 3 in PSL2(Z) must
have trace ±1.

2. We fixed the trace to be −1 and worked strictly in SL2(Z).

3. The top right entry of such an element must be non-zero. We assumed
that it is positive, since the negative case is similar (but equally as long).

4. We showed that all matrices

(
a 1
c −a− 1

)
∈ SL2(Z) are conjugate to

each other.

5. We showed that

(
0 1
c −1

)
∈ SL2(Z) is conjugate to

(
−1 1
−1 0

)
.

6. We showed that

(
a b
c −a− 1

)
∈ SL2(Z) for b > 1 is conjugate to some(

a′ b′

c′ −a′ − 1

)
∈ SL2(Z) with 0 < b′ < b.

7. By strong induction on b, we have that all

(
a b
c −a− 1

)
∈ SL2(Z) with

b > 0 are conjugate to

(
−1 1
−1 0

)
.
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Problem 4

Take γ =

(
4 9
11 25

)
. Write γ as a product of S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Proof. Recall that Tn =

(
1 n
0 1

)
for all n ∈ Z. We will use this and multipli-

cation by S to reduce γ down.

γ1 := γT−2 =

(
4 9
11 25

)(
1 −2
0 1

)
=

(
4 1
11 3

)
,

γ2 := γ1S =

(
4 1
11 3

)(
0 −1
1 0

)
=

(
1 −4
3 −11

)
,

γ3 := γ2T
4 =

(
1 −4
3 −11

)(
1 4
0 1

)
=

(
1 0
3 1

)
,

γ4 := γ3S =

(
1 0
3 1

)(
0 −1
1 0

)
=

(
0 −1
1 −3

)
,

γ5 := γ4T
3 =

(
0 −1
1 −3

)(
1 3
0 1

)
=

(
0 −1
1 0

)
= S.

Working backwards, we find γT−2ST 4ST 3 = S, so γ = ST−3S−1T−4S−1T 2.
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