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Problem 1

Given a ∈ C, letDa be the parallelogram with vertices a, a+ω2, a+ω1+ω2, a+ω1.
Prove that Da is a fundamental domain for the group G of translations along
the lattice Λ generated by ω1, ω2. That is,

(i) Given any z ∈ C, there exists ω ∈ Λ such that z + ω ∈ Da.

(ii) If there are two points z1, z2 in the interior of Da such that z1 = z2 + ω
for some ω ∈ Λ, then ω = 0.

Proof. (i) Since ω1, ω2 are two R-linearly independent complex numbers and
C has R-dimension 2, they form an R-basis for C. Thus we can write
z − a = t1ω1 + t2ω2 for t1, t2 ∈ R. Furthermore, write t1 = b + t′1 and
t2 = c + t′2 with b, c ∈ Z and t′1, t

′
2 ∈ [0, 1). Let ω = −bω1 − cω2; this is a

point in Λ. Then z+ω = a+ t′1ω1 +ω′
2. Da can be explicitly described as

the set of points a + t1ω1 + t2ω2 with t1, t2 ∈ [0, 1]. Thus, z + ω ∈ Da as
desired.

(ii) The interior ofDa is the set of points a+t1ω1+t2ω2 with t1, t2 ∈ (0, 1). Let
z1 and z2 = a+ t1ω1 + t2ω2 be in the interior of Da. Suppose z1 = z2 + ω
for ω = bω1 + cω2 ∈ Λ. Then z1 = a + (t1 + b)ω1 + (t2 + c)ω2 is in
Da. This means t1 + b and t2 + c are in (0, 1). Note that if x, y ∈ (0, 1),
then x − y ∈ (−1, 1). In particular, this implies b, c ∈ (−1, 1). But the
only integer contained in (−1, 1) is 0, so b = c = 0, so ω = 0. Thus
z1 = z2 + 0 = z2.
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Problem 2

Let Λ be a lattice and let ℘ be its Weierstrass ℘-function.

(a) Show that ℘ is even and that ℘′ is doubly-periodic with respect to Λ.

(b) For i = 1, 2 show that the function ℘(z + ωi) − ℘(z) is a constant ci by
taking its derivative. Substitute z = −ωi/2 to show ci = 0. Conclude that
℘ is doubly-periodic with respect to Λ.

Proof. (a) Note that there is a fixed-point free involution on Λ \ {0} given by
ω 7→ −ω. Since the summation in the definition of ℘ is indexed over Λ\{0}
and is absolutely convergent, we can swap ω and −ω to get the exact same
sum. Therefore:

℘(−z) =
1

(−z)2
+

∑
ω∈Λ\{0}

(
1

(−z − ω)2
− 1

ω2

)

=
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − (−ω))2
− 1

(−ω)2

)

=
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
= ℘(z).

Similarly, there is a fixed-point free involution on Λ given by ω 7→ ω−ω′ for
some ω′ ∈ Λ. Since the summation over Λ in ℘′ is absolutely convergent,
we can swap ω and ω − ω′ for any ω′ ∈ Λ to get the same sum. Therefore,
for any ω′ ∈ Λ:

℘′(z + ω′) = −2
∑
ω∈Λ

1

(z + ω′ − ω)3
= −2

∑
ω∈Λ

1

(z − (ω − ω′))3

= −2
∑
ω∈Λ

1

(z − ω)3
= ℘′(z).

(b) Let fi(z) = ℘(z+ωi)−℘(z). Then f ′
i(z) = ℘′(z+ωi)−℘′(z) = 0 by part (a).

Thus fi(z) = ci is a constant. Since ω1, ω2 are a basis for C over R, the point
z = −ωi/2 is not in Λ since it is a non-integer linear combination of ω1, ω2.
Thus, we can evaluate fi at z = −ωi/2 to get ci = ℘(ωi/2)− ℘(−ωi/2) = 0
by part (a). Thus, ℘(z + ωi) = ℘(z) for i = 1, 2, so ℘ is doubly-periodic
with respect to Λ as desired.
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Problem 3

Set ℘(z; τ) = ℘(z; τZ⊕ Z), so ℘(z; Λ) = ω−2
2 ℘(z/ω2;ω1/ω2). For all z ∈ C, τ ∈

H, and

(
a b
c d

)
∈ SL2(Z), show that

℘

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)2℘(z; τ).

Proof. Using ℘(z; Λ) = ω−2
2 ℘(z/ω2;ω1/ω2), we see that

(cτ + d)−2℘

(
z

cτ + d
;
aτ + b

cτ + d

)
= ℘(z; Λ′)

where Λ′ = (aτ+b)Z⊕(cτ+d)Z. Let Λ = τZ⊕Z. If we can show Λ = Λ′, then we
will be done. Clearly Λ′ ⊂ Λ, since e(aτ+b)+f(cτ+d) = (ae+cf)τ+(be+df).
On the other hand, since ad− bc = 1, we have

1 = −c(aτ + b) + a(cτ + d) ∈ Λ′,

τ = d(aτ + b)− b(cτ + d) ∈ Λ′.

Thus Λ ⊂ Λ′.
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Problem 4

Consider two lattices Λ = ω1Z⊕ω2Z and Λ′ = ω′
1Z⊕ω′

2Z and with ω1/ω2, ω
′
1/ω

′
2 ∈

H. Show that Λ′ = Λ iff(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
for some

(
a b
c d

)
∈ SL2(Z).

Proof. First, suppose Λ′ = Λ. This can be split into two statements: Λ′ ⊂ Λ
and Λ ⊂ Λ′. From the first case, we see that ω′

1, ω
′
2 ∈ Λ, meaning by definition

that there are integers a, b, c, d such that ω′
1 = aω1 + bω2 and ω′

2 = cω1 + dω2,
or alternatively, (

ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
.

From the second containment we have ω1, ω2 ∈ Λ′, which means there are inte-
gers a′, b′, c′, d′ such that ω1 = a′ω′

1+b′ω′
2 and ω2 = c′ω′

1+d′ω′
2, or alternatively,(

ω1

ω2

)
=

(
a′ b′

c′ d′

)(
ω′
1

ω′
2

)
.

We then have(
ω′
1

ω′
2

)
=

(
a b
c d

)(
a′ b′

c′ d′

)(
ω′
1

ω′
2

)
=

(
w x
y z

)(
ω′
1

ω′
2

)
,

where

(
a b
c d

)(
a′ b′

c′ d′

)
=

(
w x
y z

)
. Since ω′

1, ω
′
2 form an R-basis for C, the

equalities (w − 1)ω′
1 + xω′

2 = 0 and yω′
1 + (z − 1)ω′

2 = 0 imply that

(
w x
y z

)
=(

1 0
0 1

)
. A similar argument shows

(
a′ b′

c′ d′

)(
a b
c d

)
=

(
1 0
0 1

)
, so

(
a b
c d

)
∈

GL2(Z). Since the determinant is multiplicative, we know det

(
a b
c d

)
is a unit

in Z, so either −1 or 1. It remains to show that it is in fact 1. To do so, we use
the fact that ω1/ω2, ω

′
1/ω

′
2 ∈ H. Write τ = ω1/ω2 = α+ βi. Then

ω′
1

ω′
2

=
aω1 + bω2

cω1 + dω2
=

aτ + b

cτ + d
=

aα+ b+ aβi

cα+ d+ cβi

=
(aα+ b+ aβi)(cα+ d− cβi)

|cτ + d|2
.

The denominator is positive. The imaginary part of the numerator is aβ(cα +
d) − cβ(aα + b) = (ac − bd)β. We know that β > 0 and (ac − bd)β > 0, so we
must have ac− bd > 0. Since |ac− bd| = 1, we have ac− bd = 1 as desired.
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Now suppose(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
for some

(
a b
c d

)
∈ SL2(Z).

For all integers m,n, we have mω′
1 + nω′

2 = (am + cn)ω1 + (bm + dn)ω2 ∈ Λ,

so Λ′ ⊂ Λ. Since

(
a b
c d

)
∈ SL2(Z), its inverse is also an integer matrix, call it(

a′ b′

c′ d′

)
. Then

(
ω1

ω2

)
=

(
a′ b′

c′ d′

)(
ω′
1

ω′
2

)
.

For all integers m,n, we have mω1+nω2 = (a′m+ c′n)ω′
1+(b′m+ d′n)ω′

2 ∈ Λ′,
so Λ ⊂ Λ′. Thus Λ = Λ′ as desired.
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