
MATH 7230 Homework 4

Andrea Bourque

February 2021

1 Problem 4.2 1

Let (p) = pB have prime factorization ΠiP
ei
i . Show that p ramifies if and only

if the ring B/(p) has nonzero nilpotent elements.

Proof. If p does not ramify, then B/pB is isomorphic to a direct sum of finite
fields, and so it has no nonzero nilpotent elements. Conversely, if p ramifies,
then it is a direct sum of finite rings, at least one not being an integral domain,
say B/P ei

i . Then the element pi +P ei
i for pi ∈ Pi \P ei

i is nonzero and nilpotent;
(pi +P ei

i )ei = peii +P ei
i = 0+P ei

i . Note also that Pi \P ei
i is not empty, because

then P ei
i would be prime, a contradiction. This extends to an element of B/pB

which is nilpotent and non-zero, say (0 + P e1
1 , ..., pi + P ei

i , ..., 0 + P er
r ).
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2 Problem 4.2 2

Show that a nilpotent element (or matrix) has zero trace.

Proof. A nilpotent element satisfies a polynomial equation Xn = 0. The mini-
mal polynomial must then divide Xn, so it is equal to Xd. The characteristic
polynomial is a power of the minimal polynomial, so it is equal to some Xk.
Thus the trace is zero.
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3 Problem 4.2 3

Represent elements of B by matrices in terms of an integral basis ω1, ..., ωn.
Reduction of the entries mod p gives matrices representing elements of B/(p).
Suppose A(β), the matrix representing β, is nilpotent mod p. Then A(βωi) is
nilpotent mod p for each i since βωi is nilpotent mod p. By expressing β in
terms of the ωi and computing the trace of A(βωj), show that if β is nilpotent
mod p and β /∈ (p), then d ≡ 0 mod p.

Proof. Recall that, by definition, Tr(A(β)) = Tr(β). Let β =
∑
biωi. If β is

nilpotent mod p, then by the above problem, Tr(β) ≡ 0 mod p. Furthermore,
if βn ≡ 0 mod p, then (βωj)

n = βnωn
j ≡ 0 mod p. Thus βωj is also nilpotent

and has a trace that is 0 mod p. Specifically, Tr(βωj) = Tr(
∑
biωiωj) =∑

biTr(ωiωj) ≡ 0 mod p. This holds for each j = 1, ..., n. Since β /∈ (p),
not all the bi are 0 mod p. Thus by manipulating the rows of the matrix
(Tr(ωiωj)), we form a matrix with a row of elements which are 0 mod p, so it
has a determinant which is 0 mod p. Since we can do this with bi which are
not 0 mod p, it follows that the determinant of (Tr(ωiωj)) is also 0 mod p. By
definition, d = det(Tr(ωiωj)), so d ≡ 0 mod p.
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4 Problem 4.3 1

Using the results of the section, factor (2) and (3) in the ring Z[
√
−5] rigorously.

Proof. The minimal polynomial of
√
−5 is X2 + 5. Mod 2 gives X2 + 1 which

factors into (X + 1)2. Thus (2) = (2, 1 +
√
−5)2.

Mod 3 gives X2 + 2 which factors into (X + 1)(X + 2). Thus (3) = (2, 1 +√
−5)(2, 2 +

√
−5).
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5 Problem 4.3 2

Factor (5), (7), and (11) in Z[
√
−5].

Proof. Mod 5 gives X2. Thus (5) = (5,
√
−5)2 = (

√
−5)2.

Mod 7 gives X2 + 5 = (X+ 3)(X+ 4). Thus (7) = (5, 3 +
√
−5)(5, 4 +

√
−5).

Mod 11 gives X2 + 5, which cannot be factored because 6 is not a quadratic
residue mod 11. Thus (11) is a prime ideal in Z[

√
−5].

5



6 Problem 4.3 3

Let L = Q( 3
√

2), and assume that the ring of integers is Z[ 3
√

2]. Find the prime
factorization of (5).

Proof. The minimal polynomial is X3 − 2. Reducing mod 5 gives X3 + 3 =
(X + 2)(X2 + 3X + 4). Thus (5) = (5, 2 + 3

√
2)(5, 4 + 3 3

√
2 + 3
√

4).
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