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For Problems 3.1 1-3: Let Py, Ps,...,Ps, s > 2 be ideals in a ring R, with
Py, P, not necessarily prime, but Pj, ..., P; prime, if s > 3. Now let I be any
ideal of R. We claim that if I C U;_, P;, then for some ¢ we have I C P;.

1 Problem 3.1 1

Suppose the result is false. Show that without loss of generality, we can assume
the existence of elements a; € I with a; € P, but a; ¢ PyU---UP;_1 U P14 U
..U P,.

Proof. Each element of I is contained in some F;, by the property of unions. If
there is some P; for which TN P; = (), then we may remove P; from our collection
and relabel the ideals. This is valid because I could never be a subset of P;,
and the fact that I is a subset of the union would not change. Thus, without
loss of generality, for each i, there is some a; € I with a; € P;.

Now, suppose it is not possible to choose a; ¢ PyU---UP;,_1UP; 41 U---UP;.
Then theideal IN P, C PLU---UP;,_1UP;;1U---UPs. This is the hypothesis
of the lemma, with I N P; taking the place of I, but with one less ideal. We then
could apply mathematical induction, assuming we prove a base case, which will
be done in the next problem. Thus, we know that I N P; C P; for some j # 1.
But then I C PLU---UFP;,_1UP;11U---UPs, since P; contains I N P; and [ is
contained in (PyU---UP;_1UP;1U---UPs)UP;. Therefore, if we cannot choose
a; € I witha; € P,anda; ¢ PLU---UP;_1UP;;1U---U P, we can discard
P; altogether. Thus, without loss of generality, we can assume the existence of
elements a; € I with a; € P anda; ¢ PLU---UP,_1UP; 41 U---UPs. O



2 Problem 3.1 2

Prove the result for s = 2.

Proof. Let I C Py U P,, and suppose I € P;, I € Py. If x € I, then either
x € Py or x € P,. But there must be some z1, 29 € I with ©1 ¢ Ps, x2 ¢ Py, so
that 1 € Py, x5 € P5. Then x1 +x4 € I, so either z1 +x5 € Py or 1 + 22 € Ps.
But this is equivalent to x5 € Py or x1 € P5, which is a contradiction. O



3 Problem 3.1 3

Now assume s > 2, and observe that ajas...as—1 € PLN---N Ps_1 but as ¢
PU---UP;_1. Let a = ajas . .. as_1+as, which does not belong to PyU- - -UP,_1.
Show that a € I and a ¢ P, U--- U Pg, a contradiction.

Proof. Each a; € I, so by properties of ideals we have a € I as well. We know
a¢ PyU---UPs_q, since ayay...as_1 € PLU---UPs, and as ¢ PyU---UPs_q.
Then if a € Py U ---U Pg, the only possibility would be a € Ps. Since as € Ps,
this implies a1 ...a5s_1 € P;. Since s > 2, Py is a prime ideal. This means
that some a; € P, where ¢ = 1,...,s — 1. This is a contradiction, since each
ai¢P1U'~'Upi_1UPi+1U"'UPS. ]



4 Problem 3.2 1

If I and J are relatively prime ideals, show that I.J = I N J. More generally, if
Iy, ..., I, are relatively prime in pairs, show that Iy ..., = N}, 1;.

Proof. In general, we know that I.J C I N J by properties of ideals. Thus let
xe€INJ. Suppose 1 =r+ s, wherer € I,s € J. Then x = rx + xs shows that
xell.

In the general case, we use induction. We must show that if I,, is coprime to
each of Iy,...I,_1, then I, is coprime to I; N---NI,_;. We can create a set of
equations a;+b; = 1, where a; € I; and b; € I,,, fori = 1,...,n—1. By expanding
I (a; +b;) =1, we get a +b =1, where a = ay ...a, and b are all the other
terms. It is clear that a € Iy N---N1,_1 and b € I,, by the definition of ideals.
Thus I,, and I1N---NI,_; are coprime, so we can inductively prove the statement
since l...L,=(LnN---Nl_1),=Ln---Nnl_)NL,=LN---NL,. O



5 Problem 3.2 2

Let P, and P, be relatively prime ideals. Show that P| and Py are relatively
prime for arbitrary positive integers r, s.

Proof. If a+b =1, where a € P;,b € Py, then

-1 -1
1= (a+b)" st =a" (as_l + .t (T te >b5‘1>+bs ((T s >ar_l + .t br—1>
r r+1

shows that 1 € P{ 4+ P5, so P[ and P5 are coprime. O



6 Problem 3.3 4

Show that the ring of algebraic integers in Q(+/—17) is not a unique factorization
domain.

Proof. The ring of algebraic integers is Z[v/—17]. Then (2++/—17)(2—v/—17) =
3xT.

First, we show that no elements have N(z) = 3 or 7. For, suppose & =
a+by/—17 € Z[\/—17], so N(z) = a® + 17b%. If b # 0, then N(z) > 17. Then
N(xz) =3 or 7 implies b = 0, so x € Z. But, no square of an integer is equal to
3 or 7, so the norm of an element cannot possibly be 3 or 7.

Next, we show that if N(xz) = 1, then x = £1. Using the same inequality
that N(xz) > 17 if b # 0, we must have b = 0, so that « € Z. Then x is a square
root of 1, so it is just +1.

Now, N(2+ v—17) = 21. If 2+ /=17 = ab, then N(a)N(b) = 21. We
have ruled out the possibility for the norms to be 3 or 7, so without loss of
generality, we have N(a) = 1 and N(b) = 21. But then a = £1, and b =
+(2 + v/—17). Therefore, 2 + /—17 is irreducible. Similar logic shows that
2 — +/—17 is irreducible, since it also has a norm of 21.

Next, N(3) =9, so if 3 = ab, N(a)N(b) = 9. Again, N(a) # 3, so without
loss of generality, N(a) = 1, and thus a = +1, b = 3.

Finally, N(7) =49, so if 7= ab, N(a)N(b) = 49. N(a) # 7, so without loss
of generality, N(a) =1, a = £1, b = £T7.

Therefore, in the ring Z[/—17], 21 has two unique factorizations, so the ring
is not a unique factorization domain. O



For the problems 3.4 1-3, let P, be the ideal (2,1 4 +/=5) in Z[/-5].

7 Problem 3.4 1
Show that 1 — /=5 € P, and conclude that 6 € P3.
Proof. 1—v/~=5=2—(14++/=5) € P,. Then 6 = (1++/-5)(1—v/-5) € P?. O



8 Problem 3.4 2

Show that 2 € P§, and hence that (2) C P3.

Proof. We have 6 € P by the above result. Furthermore, since 2 € Py, 4 =
22 € P§. Thus 2 =6 — 4 € P} as desired. O



9 Problem 3.4 3

Expand P2 = (2,14 v/=5)(2,1 + +/—5) and conclude that P2 C (2).

Proof. We have

(2a+b(1+v=5))(2c+d(1+v=5) = dac+2(ad+bc)(1+v/—=5) +bd(—4+2v/~5)

=2 [2ac + ad + bc — 2bd + (ad + be + bd)vV/—5] € (2),

so any element of P# is a sum of multiples of 2, so PZ C (2). O



