MATH 7230 Homework 3 #### Andrea Bourque #### February 2021 For Problems 3.1 1-3: Let $P_1, P_2, ..., P_s, s \ge 2$ be ideals in a ring R, with P_1, P_2 not necessarily prime, but $P_3, ..., P_s$ prime, if $s \ge 3$. Now let I be any ideal of R. We claim that if $I \subseteq \bigcup_{i=1}^s P_i$, then for some i we have $I \subseteq P_i$. #### 1 Problem 3.1 1 Suppose the result is false. Show that without loss of generality, we can assume the existence of elements $a_i \in I$ with $a_i \in P_i$ but $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$. *Proof.* Each element of I is contained in some P_i , by the property of unions. If there is some P_i for which $I \cap P_i = \emptyset$, then we may remove P_i from our collection and relabel the ideals. This is valid because I could never be a subset of P_i , and the fact that I is a subset of the union would not change. Thus, without loss of generality, for each i, there is some $a_i \in I$ with $a_i \in P_i$. Now, suppose it is not possible to choose $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$. Then the ideal $I \cap P_i \subseteq P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$. This is the hypothesis of the lemma, with $I \cap P_i$ taking the place of I, but with one less ideal. We then could apply mathematical induction, assuming we prove a base case, which will be done in the next problem. Thus, we know that $I \cap P_i \subseteq P_j$ for some $j \neq i$. But then $I \subseteq P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$, since P_j contains $I \cap P_i$ and I is contained in $(P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s) \cup P_i$. Therefore, if we cannot choose $a_i \in I$ with $a_i \in P_i$ and $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$, we can discard P_i altogether. Thus, without loss of generality, we can assume the existence of elements $a_i \in I$ with $a_i \in P_i$ and $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$. \square ## 2 Problem 3.1 2 Prove the result for s=2. *Proof.* Let $I \subseteq P_1 \cup P_2$, and suppose $I \not\subseteq P_1$, $I \not\subseteq P_2$. If $x \in I$, then either $x \in P_1$ or $x \in P_2$. But there must be some $x_1, x_2 \in I$ with $x_1 \notin P_2$, $x_2 \notin P_1$, so that $x_1 \in P_1$, $x_2 \in P_2$. Then $x_1 + x_2 \in I$, so either $x_1 + x_2 \in P_1$ or $x_1 + x_2 \in P_2$. But this is equivalent to $x_2 \in P_1$ or $x_1 \in P_2$, which is a contradiction. \square ## 3 Problem 3.1 3 Now assume s>2, and observe that $a_1a_2\ldots a_{s-1}\in P_1\cap\cdots\cap P_{s-1}$ but $a_s\notin P_1\cup\cdots\cup P_{s-1}$. Let $a=a_1a_2\ldots a_{s-1}+a_s$, which does not belong to $P_1\cup\cdots\cup P_{s-1}$. Show that $a\in I$ and $a\notin P_1\cup\cdots\cup P_s$, a contradiction. *Proof.* Each $a_i \in I$, so by properties of ideals we have $a \in I$ as well. We know $a \notin P_1 \cup \cdots \cup P_{s-1}$, since $a_1 a_2 \ldots a_{s-1} \in P_1 \cup \cdots \cup P_{s_1}$ and $a_s \notin P_1 \cup \cdots \cup P_{s-1}$. Then if $a \in P_1 \cup \cdots \cup P_s$, the only possibility would be $a \in P_s$. Since $a_s \in P_s$, this implies $a_1 \ldots a_{s-1} \in P_s$. Since s > 2, P_s is a prime ideal. This means that some $a_i \in P_s$, where $i = 1, \ldots, s-1$. This is a contradiction, since each $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_s$. ### 4 Problem 3.2 1 If I and J are relatively prime ideals, show that $IJ = I \cap J$. More generally, if $I_1, ..., I_n$ are relatively prime in pairs, show that $I_1 ... I_n = \bigcap_{i=1}^n I_i$. *Proof.* In general, we know that $IJ \subseteq I \cap J$ by properties of ideals. Thus let $x \in I \cap J$. Suppose 1 = r + s, where $r \in I$, $s \in J$. Then x = rx + xs shows that $x \in IJ$. In the general case, we use induction. We must show that if I_n is coprime to each of $I_1,...I_{n-1}$, then I_n is coprime to $I_1\cap\cdots\cap I_{n-1}$. We can create a set of equations $a_i+b_i=1$, where $a_i\in I_i$ and $b_i\in I_n$, for i=1,...,n-1. By expanding $\prod_{i=1}^n(a_i+b_i)=1$, we get a+b=1, where $a=a_1\ldots a_n$ and b are all the other terms. It is clear that $a\in I_1\cap\cdots\cap I_{n-1}$ and $b\in I_n$ by the definition of ideals. Thus I_n and $I_1\cap\cdots\cap I_{n-1}$ are coprime, so we can inductively prove the statement since $I_1\ldots I_n=(I_1\cap\cdots\cap I_{n-1})I_n=(I_1\cap\cdots\cap I_{n-1})\cap I_n=I_1\cap\cdots\cap I_n$. \square ## 5 Problem 3.2 2 Let P_1 and P_2 be relatively prime ideals. Show that P_1^r and P_2^s are relatively prime for arbitrary positive integers r, s. *Proof.* If a + b = 1, where $a \in P_1, b \in P_2$, then $$1 = (a+b)^{r+s-1} = a^r \left(a^{s-1} + \ldots + \binom{r+s-1}{r}b^{s-1}\right) + b^s \left(\binom{r+s-1}{r+1}a^{r-1} + \ldots + b^{r-1}\right)$$ shows that $1 \in P_1^r + P_2^s$, so P_1^r and P_2^s are coprime. ### 6 Problem 3.3 4 Show that the ring of algebraic integers in $\mathbb{Q}(\sqrt{-17})$ is not a unique factorization domain. *Proof.* The ring of algebraic integers is $\mathbb{Z}[\sqrt{-17}]$. Then $(2+\sqrt{-17})(2-\sqrt{-17})=3\times 7$. First, we show that no elements have N(x)=3 or 7. For, suppose $x=a+b\sqrt{-17}\in\mathbb{Z}[\sqrt{-17}]$, so $N(x)=a^2+17b^2$. If $b\neq 0$, then $N(x)\geq 17$. Then N(x)=3 or 7 implies b=0, so $x\in\mathbb{Z}$. But, no square of an integer is equal to 3 or 7, so the norm of an element cannot possibly be 3 or 7. Next, we show that if N(x) = 1, then $x = \pm 1$. Using the same inequality that $N(x) \ge 17$ if $b \ne 0$, we must have b = 0, so that $x \in \mathbb{Z}$. Then x is a square root of 1, so it is just ± 1 . Now, $N(2+\sqrt{-17})=21$. If $2+\sqrt{-17}=ab$, then N(a)N(b)=21. We have ruled out the possibility for the norms to be 3 or 7, so without loss of generality, we have N(a)=1 and N(b)=21. But then $a=\pm 1$, and $b=\pm (2+\sqrt{-17})$. Therefore, $2+\sqrt{-17}$ is irreducible. Similar logic shows that $2-\sqrt{-17}$ is irreducible, since it also has a norm of 21. Next, N(3) = 9, so if 3 = ab, N(a)N(b) = 9. Again, $N(a) \neq 3$, so without loss of generality, N(a) = 1, and thus $a = \pm 1$, $b = \pm 3$. Finally, N(7) = 49, so if 7 = ab, N(a)N(b) = 49. $N(a) \neq 7$, so without loss of generality, N(a) = 1, $a = \pm 1$, $b = \pm 7$. Therefore, in the ring $\mathbb{Z}[\sqrt{-17}]$, 21 has two unique factorizations, so the ring is not a unique factorization domain. For the problems 3.4 1-3, let P_2 be the ideal $(2, 1 + \sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$. ## 7 Problem 3.4 1 Show that $1 - \sqrt{-5} \in P_2$ and conclude that $6 \in P_2^2$. Proof. $$1 - \sqrt{-5} = 2 - (1 + \sqrt{-5}) \in P_2$$. Then $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \in P_2^2$. \square # 8 Problem 3.4 2 Show that $2 \in P_2^2$, and hence that $(2) \subseteq P_2^2$. *Proof.* We have $6\in P_2^2$ by the above result. Furthermore, since $2\in P_2$, $4=2^2\in P_2^2$. Thus $2=6-4\in P_2^2$ as desired. # 9 Problem 3.4 3 Expand $P_2^2=(2,1+\sqrt{-5})(2,1+\sqrt{-5})$ and conclude that $P_2^2\subseteq (2).$ *Proof.* We have $$(2a+b(1+\sqrt{-5}))(2c+d(1+\sqrt{-5})=4ac+2(ad+bc)(1+\sqrt{-5})+bd(-4+2\sqrt{-5})$$ $$=2\left[2ac+ad+bc-2bd+(ad+bc+bd)\sqrt{-5}\right]\in(2),$$ so any element of P_2^2 is a sum of multiples of 2, so $P_2^2\subseteq (2).$