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For Problems 3.1 1-3: Let P1, P2, ..., Ps, s ≥ 2 be ideals in a ring R, with
P1, P2 not necessarily prime, but P3, ..., Ps prime, if s ≥ 3. Now let I be any
ideal of R. We claim that if I ⊆ ∪si=1Pi, then for some i we have I ⊆ Pi.

1 Problem 3.1 1

Suppose the result is false. Show that without loss of generality, we can assume
the existence of elements ai ∈ I with ai ∈ Pi but ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪
· · · ∪ Ps.

Proof. Each element of I is contained in some Pi, by the property of unions. If
there is some Pi for which I∩Pi = ∅, then we may remove Pi from our collection
and relabel the ideals. This is valid because I could never be a subset of Pi,
and the fact that I is a subset of the union would not change. Thus, without
loss of generality, for each i, there is some ai ∈ I with ai ∈ Pi.

Now, suppose it is not possible to choose ai /∈ P1∪· · ·∪Pi−1∪Pi+1∪· · ·∪Ps.
Then the ideal I ∩Pi ⊆ P1 ∪ · · · ∪Pi−1 ∪Pi+1 ∪ · · · ∪Ps. This is the hypothesis
of the lemma, with I ∩Pi taking the place of I, but with one less ideal. We then
could apply mathematical induction, assuming we prove a base case, which will
be done in the next problem. Thus, we know that I ∩ Pi ⊆ Pj for some j 6= i.
But then I ⊆ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps, since Pj contains I ∩ Pi and I is
contained in (P1∪· · ·∪Pi−1∪Pi+1∪· · ·∪Ps)∪Pi. Therefore, if we cannot choose
ai ∈ I with ai ∈ Pi and ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps, we can discard
Pi altogether. Thus, without loss of generality, we can assume the existence of
elements ai ∈ I with ai ∈ Pi and ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps.
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2 Problem 3.1 2

Prove the result for s = 2.

Proof. Let I ⊆ P1 ∪ P2, and suppose I 6⊆ P1, I 6⊆ P2. If x ∈ I, then either
x ∈ P1 or x ∈ P2. But there must be some x1, x2 ∈ I with x1 /∈ P2, x2 /∈ P1, so
that x1 ∈ P1, x2 ∈ P2. Then x1 +x2 ∈ I, so either x1 +x2 ∈ P1 or x1 +x2 ∈ P2.
But this is equivalent to x2 ∈ P1 or x1 ∈ P2, which is a contradiction.
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3 Problem 3.1 3

Now assume s > 2, and observe that a1a2 . . . as−1 ∈ P1 ∩ · · · ∩ Ps−1 but as /∈
P1∪· · ·∪Ps−1. Let a = a1a2 . . . as−1+as, which does not belong to P1∪· · ·∪Ps−1.
Show that a ∈ I and a /∈ P1 ∪ · · · ∪ Ps, a contradiction.

Proof. Each ai ∈ I, so by properties of ideals we have a ∈ I as well. We know
a /∈ P1 ∪ · · · ∪Ps−1, since a1a2 . . . as−1 ∈ P1 ∪ · · · ∪Ps1 and as /∈ P1 ∪ · · · ∪Ps−1.
Then if a ∈ P1 ∪ · · · ∪ Ps, the only possibility would be a ∈ Ps. Since as ∈ Ps,
this implies a1 . . . as−1 ∈ Ps. Since s > 2, Ps is a prime ideal. This means
that some ai ∈ Ps, where i = 1, ..., s − 1. This is a contradiction, since each
ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps.
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4 Problem 3.2 1

If I and J are relatively prime ideals, show that IJ = I ∩ J . More generally, if
I1, ..., In are relatively prime in pairs, show that I1 . . . In = ∩ni=1Ii.

Proof. In general, we know that IJ ⊆ I ∩ J by properties of ideals. Thus let
x ∈ I ∩ J . Suppose 1 = r + s, where r ∈ I, s ∈ J . Then x = rx+ xs shows that
x ∈ IJ .

In the general case, we use induction. We must show that if In is coprime to
each of I1, ...In−1, then In is coprime to I1 ∩ · · · ∩ In−1. We can create a set of
equations ai+bi = 1, where ai ∈ Ii and bi ∈ In, for i = 1, ..., n−1. By expanding
Πn

i=1(ai + bi) = 1, we get a + b = 1, where a = a1 . . . an and b are all the other
terms. It is clear that a ∈ I1 ∩ · · · ∩ In−1 and b ∈ In by the definition of ideals.
Thus In and I1∩· · ·∩In−1 are coprime, so we can inductively prove the statement
since I1 . . . In = (I1 ∩ · · · ∩ In−1)In = (I1 ∩ · · · ∩ In−1) ∩ In = I1 ∩ · · · ∩ In.
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5 Problem 3.2 2

Let P1 and P2 be relatively prime ideals. Show that P r
1 and P s

2 are relatively
prime for arbitrary positive integers r, s.

Proof. If a + b = 1, where a ∈ P1, b ∈ P2, then

1 = (a+b)r+s−1 = ar
(
as−1 + ... +

(
r + s− 1

r

)
bs−1

)
+bs

((
r + s− 1

r + 1

)
ar−1 + ... + br−1

)
shows that 1 ∈ P r

1 + P s
2 , so P r

1 and P s
2 are coprime.
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6 Problem 3.3 4

Show that the ring of algebraic integers in Q(
√
−17) is not a unique factorization

domain.

Proof. The ring of algebraic integers is Z[
√
−17]. Then (2+

√
−17)(2−

√
−17) =

3× 7.
First, we show that no elements have N(x) = 3 or 7. For, suppose x =

a + b
√
−17 ∈ Z[

√
−17], so N(x) = a2 + 17b2. If b 6= 0, then N(x) ≥ 17. Then

N(x) = 3 or 7 implies b = 0, so x ∈ Z. But, no square of an integer is equal to
3 or 7, so the norm of an element cannot possibly be 3 or 7.

Next, we show that if N(x) = 1, then x = ±1. Using the same inequality
that N(x) ≥ 17 if b 6= 0, we must have b = 0, so that x ∈ Z. Then x is a square
root of 1, so it is just ±1.

Now, N(2 +
√
−17) = 21. If 2 +

√
−17 = ab, then N(a)N(b) = 21. We

have ruled out the possibility for the norms to be 3 or 7, so without loss of
generality, we have N(a) = 1 and N(b) = 21. But then a = ±1, and b =
±(2 +

√
−17). Therefore, 2 +

√
−17 is irreducible. Similar logic shows that

2−
√
−17 is irreducible, since it also has a norm of 21.

Next, N(3) = 9, so if 3 = ab, N(a)N(b) = 9. Again, N(a) 6= 3, so without
loss of generality, N(a) = 1, and thus a = ±1, b = ±3.

Finally, N(7) = 49, so if 7 = ab, N(a)N(b) = 49. N(a) 6= 7, so without loss
of generality, N(a) = 1, a = ±1, b = ±7.

Therefore, in the ring Z[
√
−17], 21 has two unique factorizations, so the ring

is not a unique factorization domain.
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For the problems 3.4 1-3, let P2 be the ideal (2, 1 +
√
−5) in Z[

√
−5].

7 Problem 3.4 1

Show that 1−
√
−5 ∈ P2 and conclude that 6 ∈ P 2

2 .

Proof. 1−
√
−5 = 2−(1+

√
−5) ∈ P2. Then 6 = (1+

√
−5)(1−

√
−5) ∈ P 2

2 .

7



8 Problem 3.4 2

Show that 2 ∈ P 2
2 , and hence that (2) ⊆ P 2

2 .

Proof. We have 6 ∈ P 2
2 by the above result. Furthermore, since 2 ∈ P2, 4 =

22 ∈ P 2
2 . Thus 2 = 6− 4 ∈ P 2

2 as desired.
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9 Problem 3.4 3

Expand P 2
2 = (2, 1 +

√
−5)(2, 1 +

√
−5) and conclude that P 2

2 ⊆ (2).

Proof. We have

(2a+b(1+
√
−5))(2c+d(1+

√
−5) = 4ac+2(ad+bc)(1+

√
−5)+bd(−4+2

√
−5)

= 2
[
2ac + ad + bc− 2bd + (ad + bc + bd)

√
−5

]
∈ (2),

so any element of P 2
2 is a sum of multiples of 2, so P 2

2 ⊆ (2).
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