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1 Problem 2.1 1

If E = Q(θ) where θ is a root of X3 − 3X + 1, find the norm and trace of θ2.

Proof. We begin by analyzing how θ2 acts on the basis {1, θ, θ2} of E/Q. First,
θ2 · 1 = θ2. Next, θ2 · θ = θ3 = 3θ− 1. Finally, θ2 · θ2 = θ4 = 3θ2− θ. Thus over
this basis, the map given by multiplication by θ2 is0 −1 0

0 3 −1
1 0 3

 .

Thus the trace of θ2 is 6, and the norm of θ2 is 1.
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2 Problem 2.1 2

Find the trace of the primitive 6th root of unity ω in the cyclotomic extension
Q6 = Q(ω).

Proof. Note that in this case, the characteristic polynomial of ω is equal to the
minimal polynomial, which is ω2−ω+1 = 0. Then the trace is 1, and the norm
is also 1.
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3 Problem 2.1 4

Let θ be a root of X4 − 2 over Q. Show that
√

3 cannot belong to Q[θ].

Proof. Note to Dr. Long: I’m not sure how to prove this using the machinery
developed so far. I tried using some field theory but got nowhere. So I stuck to
my competition math roots and made this dirty.

We have a basis for Q[θ] given by {1, θ, θ2, θ3}. Thus suppose
√

3 = a+ bθ+
cθ2 + dθ3 with a, b, c, d ∈ Q. Squaring both sides gives

3 = (a2 + 2c2 + 4bd) + (2ab+ 4cd)θ + (b2 + 2d2 + 2ac)θ2 + (2ad+ 2bc)θ3.

By equating the θ and θ3 coefficients on the left and right hand sides, we get
ab = −2cd and ad = −bc. Then a2bd = 2c2bd, and b2ac = 2d2ac.

First, if we suppose bd 6= 0, we get that a2 = 2c2. We know that
√

2 /∈ Q, so
a = c = 0. Equating the θ2 coefficients then gives b2 + 2d2 = 0, which is only
possible if b = d = 0, a contradiction.

Next, if we suppose ac 6= 0, we get that b2 = 2d2. Then b = d = 0. Once
again looking at the θ2 coefficients, we get ac = 0, a contradiction.

Thus, ac = bd = 0. Looking at the θ2 equation gives b2 + 2d2 = 0, which
implies b = d = 0. Looking at the 1 coefficient, we have a2 + 2c2 = 3. Since
ac = 0, we have a = 0 or c = 0. If a = 0, then 2c2 = 3, which is not solvable
in Q. If c = 0, we have a2 = 3, which is also not solvable in Q. Thus we have
arrived at a final contradiction from the assumption that

√
3 ∈ Q[θ].
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4 Problem 2.2 1

Let L = Q(α), where α is a root of the irreducible quadratic X2+bX+c ∈ Q[X].
Show that L = Q(

√
m) for some square-free integer m.

Proof. By the quadratic formula, the roots are
−b±

√
b2 − 4c

2
. Let b = s

t , c =

p
q , where s, t, p, q ∈ Z. Then

√
b2 − 4c =

√
s2q2−4t2pq

t2q2 =

√
s2q2−4t2pq

tq . Then

let m be the product of the unique prime divisors of s2q2 − 4t2pq, so that
n
√
m =

√
s2q2 − 4t2pq for some n ∈ N, and, m is by definition square-free.

Then α ∈ {−b2 ±
n
√
m

2tq } ⊆ Q(
√
m). Furthermore,

√
m ∈ {± tqn (2α+ b)} ⊆ Q(α).

Thus the extensions are equal, as desired.
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5 Problem 2.2 2

Show that the quadratic extensions Q(
√
m), m square-free, are all distinct.

Proof. Suppose
√
n = a+ b

√
m, where n,m are square-free integers, and a, b ∈

Q. Then n = (a2 + b2m) + 2ab
√
m. Then ab = 0, so a = 0 or b = 0. If b = 0,

then
√
n = a ∈ Q, so Q(

√
n) = Q is not a quadratic extension. Thus a = 0,

so n = b2m. Let b = s
t , where s, t ∈ Z are in reduced form. Then t2n = s2m.

Both m,n are square-free, but both sides have square integer terms, implying
that they must cancel out, giving n = m.

5



6 Problem 2.2 5

Give an example of a quadratic extension of Q that is also a cyclotomic exten-
sion.

Proof. Q(
√
−3) is the cyclotomic extension given by ζ3 = e2πi/3 = −1

2 +
√
−3
2 .
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7 Problem 2.3 1

Let x1, ..., xn be arbitrary algebraic integers in a number field, and consider the
direct expansion of the determinant of the matrix (σi(xj)). Let P be the sum
of those terms prefixed by plus signs, and N the sum of those terms prefixed
by minus signs. Then the discriminant D of (x1, ..., xn) is (P −N)2. Show that
P +N and PN are fixed by each σi, and deduce that they are rational numbers.

Proof. Each term in the expansion is of the form
∏n
i=1 σi(xτ(i)), where τ ∈ Sn.

P is the sum of the terms where τ is an even permutation, and N is the sum
of the terms where τ is an odd permutation. Furthermore, each σi induces a
permutation on the set of σj , say σi ◦ σj = σρ(j). Thus if ρ is even, σi will
preserve the even and odd permutations. If ρ is odd, then σi will reverse the
permutations. That is to say, either σi(P ) = P , σi(N) = N , or σi(P ) = N ,
σi(N) = P . In either case, σi(P + N) = P + N and σi(PN) = PN . Thus
P +N and PN are rational since they are fixed by each embedding.
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8 Problem 2.3 2

Show that P +N and PN are rational integers.

Proof. Since the xi were given to be algebraic, so are the σi(xj), and therefore
so are the sums of products of the σi(xj). Thus P +N and PN are algebraic,
and they are rational, so they are rational integers.

8



9 Problem 2.3 3

Show that D ≡ 0 or 1 mod 4.

Proof. D = (P − N)2 = (P + N)2 − 4PN , so D is a square mod 4. The only
squares are 0, 1, so we get the desired result.
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