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1 Problem 2.11

If E = Q(#) where 6 is a root of X3 — 3X + 1, find the norm and trace of 6.

Proof. We begin by analyzing how 62 acts on the basis {1, 6,02} of E/Q. First,
621 =02 Next, #?-0 = 6> = 30 — 1. Finally, 0-60? = 0* = 362 — 0. Thus over
this basis, the map given by multiplication by 62 is

0 -1 0
0o 3 -1
1 0 3
Thus the trace of 62 is 6, and the norm of 62 is 1. O



2 Problem 2.1 2

Find the trace of the primitive 6 root of unity w in the cyclotomic extension
Qs = Qw).
Proof. Note that in this case, the characteristic polynomial of w is equal to the

minimal polynomial, which is w? —w+1 = 0. Then the trace is 1, and the norm
is also 1. O



3 Problem 2.1 4

Let 6 be a root of X* — 2 over Q. Show that +/3 cannot belong to Q[6].

Proof. Note to Dr. Long: I'm not sure how to prove this using the machinery
developed so far. I tried using some field theory but got nowhere. So I stuck to
my competition math roots and made this dirty.

We have a basis for Q[f] given by {1,6,62,63}. Thus suppose v3 = a + b +
ch? + df? with a,b, c,d € Q. Squaring both sides gives

3 = (a® + 2¢® + 4bd) + (2ab + 4cd)0 + (b* + 2d* + 2ac)0? + (2ad + 2bc)6>.

By equating the 6 and 62 coefficients on the left and right hand sides, we get
ab = —2cd and ad = —be. Then a?bd = 2¢2bd, and b2ac = 2d?ac.

First, if we suppose bd # 0, we get that a®> = 2¢2. We know that v/2 ¢ Q, so
a = c = 0. Equating the 62 coefficients then gives b? + 2d? = 0, which is only
possible if b = d = 0, a contradiction.

Next, if we suppose ac # 0, we get that b> = 2d?>. Then b = d = 0. Once
again looking at the 62 coefficients, we get ac = 0, a contradiction.

Thus, ac = bd = 0. Looking at the 62 equation gives b> + 2d? = 0, which
implies b = d = 0. Looking at the 1 coefficient, we have a? 4+ 2¢?> = 3. Since
ac = 0, we have a = 0 or ¢ = 0. If a = 0, then 2¢? = 3, which is not solvable
in Q. If ¢ = 0, we have a® = 3, which is also not solvable in Q. Thus we have
arrived at a final contradiction from the assumption that v/3 € Q[6]. O



4 Problem 2.2 1

Let L = Q(«), where « is a root of the irreducible quadratic X2+bX +c € Q[X].
Show that L = Q(y/m) for some square-free integer m.

—b+Vb%2 —4c
2

Proof. By the quadratic formula, the roots are
242 _At2

%, where s,t,p,q € Z. Then Vb2 —4c = SZqi;;tzpq =¥ qtq 1724 Then

let m be the product of the unique prime divisors of s2¢®> — 4t%pq, so that

s2q2 — 4t2pq for some n € N, and, m is by definition square-free.

Then o € {32 + "2‘{?} C Q(y/m). Furthermore, v/m € {+%(2a + b)} € Q(w).

Thus the extensions are equal, as desired. O

. Letb=$,c=




5 Problem 2.2 2

Show that the quadratic extensions Q(y/m), m square-free, are all distinct.

Proof. Suppose \/n = a + by/m, where n, m are square-free integers, and a,b €
Q. Then n = (a® + b?>m) + 2aby/m. Then ab=0,s0a=0o0r b=0. If b =0,
then /n = a € Q, so Q(y/n) = Q is not a quadratic extension. Thus a = 0,
son =b>m. Let b= 2, where s,t € Z are in reduced form. Then t?n = s>m.
Both m,n are square-free, but both sides have square integer terms, implying

that they must cancel out, giving n = m. O



6 Problem 2.2 5

Give an example of a quadratic extension of QQ that is also a cyclotomic exten-
sion.

Proof. Q(v/=3) is the cyclotomic extension given by (3 = €*>™/3 = S+ @
U



7 Problem 2.3 1

Let x1, ..., x, be arbitrary algebraic integers in a number field, and consider the
direct expansion of the determinant of the matrix (o;(z;)). Let P be the sum
of those terms prefixed by plus signs, and N the sum of those terms prefixed
by minus signs. Then the discriminant D of (xy,...,2,) is (P — N)2. Show that
P+ N and PN are fixed by each o;, and deduce that they are rational numbers.

Proof. Each term in the expansion is of the form [T} ; 0;(x,(;)), where 7 € S,,.
P is the sum of the terms where 7 is an even permutation, and N is the sum
of the terms where 7 is an odd permutation. Furthermore, each o; induces a
permutation on the set of o;, say 0; 0 0; = 0,;). Thus if p is even, o; will
preserve the even and odd permutations. If p is odd, then o; will reverse the
permutations. That is to say, either o;(P) = P, 0;(N) = N, or 0;(P) = N,
0;(N) = P. In either case, 0;(P + N) = P+ N and 0;,(PN) = PN. Thus
P+ N and PN are rational since they are fixed by each embedding. O



8 Problem 2.3 2

Show that P+ N and PN are rational integers.

Proof. Since the x; were given to be algebraic, so are the o;(x;), and therefore
so are the sums of products of the o;(z;). Thus P+ N and PN are algebraic,
and they are rational, so they are rational integers. O



9 Problem 2.3 3

Show that D =0 or 1 mod 4.

Proof. D = (P — N)? = (P + N)? —4PN, so D is a square mod 4. The only
squares are 0, 1, so we get the desired result. O



