MATH 7230 Homework 11

Andrea Bourque

April 2021

1 Problem 9.4 1

Show that a rational number a/b is a *p*-adic integer iff *p* does not divide *b*.

Proof. a/b is a *p*-adic integer if and only if $v(a/b) = v(a) - v(b) \ge 0$, by definition. Since the fraction is in reduced terms, v(a) = 0 or v(b) = 0. $p \mid b$ if and only if v(b) > 0. Then $p \mid b$ if and only if v(a) = 0. Then $p \mid b$ if and only if v(a/b) = v(a) - v(b) = -v(b) < 0, which is true if and only if a/b is not a *p*-adic integer. \Box

With p = 3, express the product of $(2 + p + p^2)$ and $(2 + p^2)$ as a *p*-adic integer.

 $\begin{array}{l} \textit{Proof.} \ (2+p+p^2)(2+p^2) = 4 + 2p^2 + 2p + p^3 + 2p^2 + p^4 = 4 + 2p + 4p^2 + p^3 + p^4 = \\ (1+p) + 2p + (1+p)p^2 + p^3 + p^4 = 1 + 3p + p^2 + p^3 + p^4 = 1 + p^2 + p^2 + 2p^3 + p^4 = \\ 1 + 2p^2 + 2p^3 + p^4. \end{array}$

Express the p-adic integer -1 as an infinite series.

Show that the sequence $a_n = n!$ of *p*-adic integers converges to 0.

Proof. We show equivalently that $b_n = v(a_n)$ diverges to $+\infty$. By the multiplicative property of the valuation, $b_n = \sum_{i=1}^n v(i)$. Then $b_{n+1} - b_n = v(n+1) \ge 0$. Since $v(pn) = v(p) + v(n) = 1 + v(n) \ge 1 > 0$, we have $b_{n+p} - b_n = v(n+1) + \dots + v(n+p) > 0$, since one of the numbers $n+1, \dots, n+p$ will be divisible by p. Therefore b_n is monotone increasing and not eventually constant. It follows that b_n diverges to ∞ .

Does the sequence $a_n = n$ of *p*-adic integers converge?

Proof. No. For $p \nmid n$, $|a_n| = 1$, and for $p \mid n$, $|a_n| < 1$. This is regardless of how large n is.

Show that the *p*-adic power series for $\log(1+x)$, $\sum_{n=1}^{\infty}(-1)^{n+1}x^n/n$, converges in \mathbb{Q}_p for |x| < 1 and diverges elsewhere.

Proof. Notice that $p^{v(n)}|n$, so $p^{v(n)} \leq n$, so $v(n) \leq \log n / \log p$. Thus $v(n)/n \leq n$

 $\log n/(n \log p) \to 0.$ Writing $\log(1+x) = \sum_{n=1}^{\infty} a_n x^n$, we have $|a_n| = |1/n| = p^{v(n)}$. By the *n*th root test, we determine $\lim_{n\to\infty} |a_n|^{1/n} = \lim_{n\to\infty} p^{v(n)/n} = p^0 = 1$. Therefore the radius of convergence is 1.

Show that the *p*-adic valuation of n! is at most n/(p-1).

Proof.
$$v(n!) = \sum_{i=1}^{\infty} \lfloor n/p^i \rfloor \le \sum_{i=1}^{\infty} n/p^i = \frac{n}{p} \frac{1}{1-1/p} = n/(p-1).$$

Show that the *p*-adic valuation of $(p^m)!$ is $(p^m - 1)/(p - 1)$.

 $\begin{array}{l} \textit{Proof. } v((p^m)!) = \sum_{i=1}^{\infty} \lfloor p^m / p^i \rfloor = \sum_{i=1}^{m} p^{m-i} = p^m (p^{-1} + \ldots + p^{-m}) = p^m p^{-1} \frac{1 - p^{-m}}{1 - p^{-1}} = \frac{p^m - 1}{p - 1}. \end{array}$

Show that $\sum_{n=0}^{\infty} x^n/n!$ converges for $|x| < p^{-1/(p-1)}$, and diverges elsewhere.

Proof. Let $a_n = 1/n!$. Then $|a_n| = p^{v(n!)} \leq p^{n/(p-1)}$ by Problem 7. Then $|a_n|^{1/n} \leq p^{1/(p-1)}$, which is a fixed bound. By considering prime powers as in Problem 8, we can get arbitrarily close to this bound. Thus the radius of convergence is $p^{-1/(p-1)}$. For $|x| = p^{-1/(p-1)}$, so v(x) = 1/(p-1). Then $v(x^n/n!) = nv(x) - v(n!) = n/(p-1) - v(n!)$. In particular, for $n = p^m$, we have $p^m/(p-1) - (p^m-1)/(p-1) = 1/(p-1)$. Thus, there are infinitely many terms with the same absolute value in the series, so it does not converge. It follows that $|x| < p^{-1/(p-1)}$ is the interval of convergence.

Show that for any prime p, there are p-1 distinct (p-1)th roots of unity in \mathbb{Z}_p .

Proof. By Corollary 9.5.3, the (p-1) solutions to $X^{p-1} - 1 = 0$ in $\mathbb{Z}/p\mathbb{Z}$ lift to unique solutions in \mathbb{Z}_p .

Let p be an odd prime not dividing m. Describe an effective procedure for determining whether m is a square in \mathbb{Z}_p .

Proof. Let $f(X) = X^2 - m$. Since p > 2, f'(X) = 2X is relatively prime to f(X), so there are no repeated roots. By corollary 9.5.3, m is a square in \mathbb{Z}_p if and only if m is a square in $\mathbb{Z}/p\mathbb{Z}$.

Indicate how to find the series representation of \sqrt{m} and illustrate with an example.

Proof. We first solve $a_0^2 = m \mod p$. Then, we solve $(a_0 + a_1 p)^2 = m \mod p^2$. And so on.

Let p = 7, m = 11. $a_0^2 = 11 \mod 7$ gives $a_0 = 2, 5$. We take $a_0 = 2$. Then $(2 + 7a_1)^2 = 11 \mod 7^2$ gives $4 + 28a_1 = 11 \mod 49$, so $a_1 = 2$. Then $(2 + 2 \cdot 7 + 49a_2)^2 = 11 \mod 7^3$ gives $256 + 2 \cdot 16 \cdot 49a_2 = 11 \mod 343$ gives $a_2 = 4$. $(2 + 2 \cdot 7 + 4 \cdot 49 + 343a_3)^2 = 11 \mod 7^4$ gives $a_3 = 4$.

It seems that each iteration gives $a_i = (a_0 + a_1p + \dots + a_{i-1}p^{i-1})^{-1} \mod 7$.