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1 Problem 9.4 1

Show that a rational number a/b is a p-adic integer iff p does not divide b.

Proof. a/b is a p-adic integer if and only if v(a/b) = v(a)−v(b) ≥ 0, by definition.
Since the fraction is in reduced terms, v(a) = 0 or v(b) = 0. p | b if and only
if v(b) > 0. Then p | b if and only if v(a) = 0. Then p | b if and only if
v(a/b) = v(a)−v(b) = −v(b) < 0, which is true if and only if a/b is not a p-adic
integer.
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2 Problem 9.4 2

With p = 3, express the product of (2 + p+ p2) and (2 + p2) as a p-adic integer.

Proof. (2+p+p2)(2+p2) = 4+2p2+2p+p3+2p2+p4 = 4+2p+4p2+p3+p4 =
(1+p)+2p+(1+p)p2+p3+p4 = 1+3p+p2+p3+p3+p4 = 1+p2+p2+2p3+p4 =
1 + 2p2 + 2p3 + p4.
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3 Problem 9.4 3

Express the p-adic integer -1 as an infinite series.

Proof. −1 = −1 + p− p+ p2− p2 + p3− ... = (p− 1) + (p− 1)p+ (p− 1)p2 + ....
Notice then that 0 = 1− 1 = 1 + (p− 1) + (p− 1)p + (p− 1)p2 + ... = p + (p−
1)p + (p − 1)p2 + ... = pp + (p − 1)p2 + ... = pp2 + .... That is, adding one to
both sides creates an infinite telescoping effect which results in a p-adic integer
with arbitrarily high degree.
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4 Problem 9.4 4

Show that the sequence an = n! of p-adic integers converges to 0.

Proof. We show equivalently that bn = v(an) diverges to +∞. By the multiplica-
tive property of the valuation, bn =

∑n
i=1 v(i). Then bn+1 − bn = v(n + 1) ≥ 0.

Since v(pn) = v(p) + v(n) = 1 + v(n) ≥ 1 > 0, we have bn+p − bn = v(n + 1) +
... + v(n + p) > 0, since one of the numbers n + 1, ..., n + p will be divisible by
p. Therefore bn is monotone increasing and not eventually constant. It follows
that bn diverges to ∞.
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5 Problem 9.4 5

Does the sequence an = n of p-adic integers converge?

Proof. No. For p - n, |an| = 1, and for p | n, |an| < 1. This is regardless of how
large n is.
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6 Problem 9.4 6

Show that the p-adic power series for log(1 + x),
∑∞

n=1(−1)n+1xn/n, converges
in Qp for |x| < 1 and diverges elsewhere.

Proof. Notice that pv(n)|n, so pv(n) ≤ n, so v(n) ≤ log n/ log p. Thus v(n)/n ≤
log n/(n log p)→ 0.

Writing log(1 + x) =
∑∞

n=1 anx
n, we have |an| = |1/n| = pv(n). By the nth

root test, we determine limn→∞ |an|1/n = limn→∞ pv(n)/n = p0 = 1. Therefore
the radius of convergence is 1.
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7 Problem 9.4 7

Show that the p-adic valuation of n! is at most n/(p− 1).

Proof. v(n!) =
∑∞

i=1bn/pic ≤
∑∞

i=1 n/p
i = n

p
1

1−1/p = n/(p− 1).
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8 Problem 9.4 8

Show that the p-adic valuation of (pm)! is (pm − 1)/(p− 1).

Proof. v((pm)!) =
∑∞

i=1bpm/pic =
∑m

i=1 p
m−i = pm(p−1+...+p−m) = pmp−1 1−p−m

1−p−1 =
pm−1
p−1 .
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9 Problem 9.4 9

Show that
∑∞

n=0 x
n/n! converges for |x| < p−1/(p−1), and diverges elsewhere.

Proof. Let an = 1/n!. Then |an| = pv(n!) ≤ pn/(p−1) by Problem 7. Then
|an|1/n ≤ p1/(p−1), which is a fixed bound. By considering prime powers as
in Problem 8, we can get arbitrarily close to this bound. Thus the radius of
convergence is p−1/(p−1). For |x| = p−1/(p−1), so v(x) = 1/(p − 1). Then
v(xn/n!) = nv(x)−v(n!) = n/(p−1)−v(n!). In particular, for n = pm, we have
pm/(p−1)− (pm−1)/(p−1) = 1/(p−1). Thus, there are infinitely many terms
with the same absolute value in the series, so it does not converge. It follows
that |x| < p−1/(p−1) is the interval of convergence.
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10 Problem 9.5 1

Show that for any prime p, there are p − 1 distinct (p − 1)th roots of unity in
Zp.

Proof. By Corollary 9.5.3, the (p− 1) solutions to Xp−1 − 1 = 0 in Z/pZ lift to
unique solutions in Zp.
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11 Problem 9.5 2

Let p be an odd prime not dividing m. Describe an effective procedure for
determining whether m is a square in Zp.

Proof. Let f(X) = X2 − m. Since p > 2, f ′(X) = 2X is relatively prime to
f(X), so there are no repeated roots. By corollary 9.5.3, m is a square in Zp if
and only if m is a square in Z/pZ.
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12 Problem 9.5 3

Indicate how to find the series representation of
√
m and illustrate with an

example.

Proof. We first solve a20 = m mod p. Then, we solve (a0 + a1p)2 = m mod p2.
And so on.

Let p = 7, m = 11. a20 = 11 mod 7 gives a0 = 2, 5. We take a0 = 2.
Then (2 + 7a1)2 = 11 mod 72 gives 4 + 28a1 = 11 mod 49, so a1 = 2. Then
(2 + 2 · 7 + 49a2)2 = 11 mod 73 gives 256 + 2 · 16 · 49a2 = 11 mod 343 gives
a2 = 4. (2 + 2 · 7 + 4 · 49 + 343a3)2 = 11 mod 74 gives a3 = 4.

It seems that each iteration gives ai = (a0 + a1p+ ...+ ai−1p
i−1)−1 mod 7.
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