MATH 7230 Homework 1

Andrea Bourque

January 2021

For the problems 1.1 1-3, let A be a subring of the integral domain B, with B integral over A.

1 Problem 1.1 1

Suppose B is a field, and let $a \in A$ be non-zero. Then $a^{-1} \in B$, so there is an equation

 $(a^{-1})^n + c_{n-1}(a^{-1})^{n-1} + \dots + c_1a^{-1} + c_0 = 0$

with all the $c_i \in A$. Prove that $a^{-1} \in A$, so that A is a field.

Proof. Multiplying both sides by a^n gives

$$1 + c_{n-1}a + \dots + c_1a^{n-1} + c_0a^n = 0.$$

Rearranging gives

$$1 = -c_{n-1}a - \dots - c_0a^n = a(-c_{n-1} - \dots - c_0a^{n-1}),$$

 \mathbf{SO}

$$a^{-1} = -c_{n-1} - \dots - c_0 a^{n-1},$$

which is an algebraic expression in A. Thus $a^{-1} \in A$.

2 Problem 1.1 2

Now assume A is a field, and let $b \in B$ be non-zero. Then A[b] is a finitedimensional vector space over A. Let f be the A-linear transformation f(z) = bzfor $z \in A[b]$. Show that f is injective.

Proof. Suppose f(z) = bz = 0. $z \in A[b] \subseteq B$, and B is an integral domain, so either b = 0 or z = 0. b was chosen to be non-zero, so z = 0. Thus ker(f) = 0, so f is injective.

3 Problem 1.1 3

Show that f as defined before is surjective as well, and conclude B is a field.

Proof. Since B is integral over A, let $b^n + a_{n-1}b^{n-1} + \ldots + a_1b + a_0 = 0$, with all the $a_i \in A$. Then $\{1, b, \ldots, b^{n-1}\}$ is a basis for A[b]. Let $c_{n-1}b^{n-1} + \ldots + c_0 \in A[b]$. Since A is a field, a_0^{-1} exists in A. Let

$$z = -c_0 a_0^{-1} b^{n-1} + (c_{n-1} - c_0 a_{n-1} a_0^{-1}) b^{n-2} + \dots + (c_1 - c_0 a_1 a_0^{-1}).$$

Then

$$bz = -c_0 a_0^{-1} b^n + (c_{n-1} - c_0 a_{n-1} a_0^{-1}) b^{n-1} \dots + (c_1 - c_0 a_1 a_0^{-1}) b$$

= $-c_0 a_0^{-1} (-a_{n-1} b^{n-1} - \dots - a_1 b - a_0) + \dots + (c_1 - c_0 a_1 a_0^{-1}) b$
= $c_{n-1} b^{n-1} + \dots + c_1 b + c_0.$

Thus f is surjective. However, $1 \in A[b]$, so that there is a unique $z \in A[b]$ such that f(z) = bz = 1, so that $z = b^{-1}$, so B is a field.

4 Problem 1.2 1

Let \mathcal{M} be a maximal ideal of R, and assume that for every $x \in \mathcal{M}$, 1 + x is a unit. Prove that R is a local ring.

Proof. Let $x \in R \setminus \mathcal{M}$. The ideal generated by x and \mathcal{M} contains \mathcal{M} , but must be larger than \mathcal{M} since $x \notin \mathcal{M}$. Since \mathcal{M} is maximal, this means x and \mathcal{M} generate R. Thus 1 = ax + m for some $m \in \mathcal{M}$ and some $a \in R$. Then ax = 1 - m is a unit by hypothesis. Then x is also a unit, since there is some $b \in R$ such that abx = 1. Thus, \mathcal{M} consists of all the non-units in R. Any proper ideal does not contain units, and is therefore contained in \mathcal{M} , so \mathcal{M} is the unique maximal ideal in R. Thus R is a local ring.

5 Problem 1.2 2

Show that if p is prime and n is a positive integer, then $\mathbb{Z}/p^n\mathbb{Z}$ is a local ring with maximal ideal (p).

Proof. In $\mathbb{Z}/p^n\mathbb{Z}$, the units are elements coprime to p^n . Then the non-units are multiples of p, so (p) is the set of non-units in $\mathbb{Z}/p^n\mathbb{Z}$. Therefore, it is the unique maximal ideal, since every proper ideal in a ring must be contained in the set of non-units.

6 Problem 1.2 3

For any field k, let R be the ring of rational functions f/g with $f, g \in k[X_1, ..., X_n]$ and $g(a) \neq 0$ where a is a fixed point in k^n . Show that R is a local ring and identify the maximal ideal.

Proof. Note that for $f/g \in R$ to be a unit, the one condition that must be satisfied is that the inverse g/f has $f(a) \neq 0$. Therefore, the set of non-units consists of f/g where f(a) = 0. This is in fact an ideal, since if f_1/g_1 and f_2/g_2 are two functions which vanish at a, then $f_1(a)g_2(a) + f_2(a)g_1(a) = 0 + 0 = 0$, so the set is additively closed, and further, if $f/g \in R$, then $f(a)f_1(a) = 0$, so $ff_1/(gg_1)$ is also in this set. Since the set of non-units is an ideal, it is maximal, since any proper ideal is contained in the set of non-units. This also shows that this maximal ideal is unique, since any other maximal ideal would be contained in it. Thus, R is a local ring with the maximal ideal consisting of rational functions vanishing at $a \in k^n$.