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1 Problem 17.1

Show that a discrete valuation ring is integrally closed in its fraction field.

Proof. We take the definition of a discrete valuation ring (DVR) A to be an
integral domain with a discrete valuation ν on its fraction field K, such that
A = {x ∈ K : ν(x) ≥ 0}. We will show that A is a principal ideal domain
(PID). We use the facts that a PID is a unique factorization domain (UFD),
and that any UFD is integrally closed. (First fact is found in Dummit and
Foote, chapter 8, Theorem 14. Second is given as an example in Dummit and
Foote Chapter 15 section 3; also found in the remarks after Proposition 5.12
in Atiyah-MacDonald.) Thus, a DVR is integrally closed from the chain of
implications: DVR → PID → UFD → integrally closed.

Take a non-trivial ideal I in A. Since the set ν(I) ⊂ Z ∪ {∞} is bounded
below, we can take an element t ∈ I of minimal valuation, so ν(x) ≥ ν(t) for
any x ∈ I. Since I is non-trivial, ν(t) < ∞, so t ̸= 0. For any x ∈ I, x/t ∈ K
satisfies ν(x/t) = ν(x) − ν(t) ≥ 0, so x/t ∈ A. Then x ∈ (t), so I ⊂ (t). But
since t ∈ I, (t) ⊂ I. Thus I = (t).
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2 Problem 20.1

Let A = Z[x]. Consider the maximal ideal m = (p, x) for a prime number p.
Describe the m-adic completion of A.

Proof. We claim that Â = Zp[[x]], the formal power series over the p-adic inte-
gers. First, we show that the m-adic topology is the same as the topology deter-
mined by (pn, xn). This follows from the inclusions (p, x)2n ⊂ (pn, xn) ⊂ (p, x)n,
where the first inclusion follows since for any pmx2n−m, either m ≥ n or
2n − m ≥ n. Thus the completion with respect to the filtration determined
by (pn, xn) will be the same as the m-adic completion. Denote by An the ring
A/(pn, xn) = (Z/pnZ)[x]/(xn). We wish to show lim←−An = Zp[[x]].

Let (fn) be a compatible sequence of elements in (An). In particular,
write fn = an,1 + an,2x + ... + an,n−1x

n−1 where the am,n ∈ Z/pmZ and
(an,n, an+1,n, ...) is a compatible sequence. There is a unique way to turn
the am,n for fixed n into Zp coefficients. We define am,n = an,n mod pm

for m < n to give the element an = (a1,n, a2,n, ...) ∈ Zp. Then we define
f = a1 + a2x + ... ∈ Zp[[x]]. This construction gives a map lim←−An → Zp[[x]],
sending (fn) to f . We can similarly define a map Zp[[x]]→ lim←−An by taking f
to the sequence fn = f mod (pn, xn). The two maps are inverse to each other.
It is easy to see that the latter map is a morphism, since reduction mod an ideal
preserves algebraic structure. Thus Â = lim←−An ≡ Zp[[x]].
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3 Problem 21.1

Use Hensel’s lemma to find a solution to x2 − 3 = 0 in the 13-adic numbers.
Give the expansion up to the 133 term.

Proof. First we solve x2 − 3 ≡ 0 mod 13. Note that x2 − 3 ≡ x2 − 16 =
(x− 4)(x+4) ≡ (x− 4)(x− 9), so we have x ≡ 4, 9. Since the question asks for
“a” solution, we just focus on x ≡ 4. Since 2(4) ̸≡ 0 mod 13, we can lift to the
next root. We solve (4 + 13t)2 ≡ 3 mod 132, or 13 + 104t ≡ 0 mod 132. Then
1 + 8t ≡ 0 mod 13, which gives t = 8. Next we look at (108 + 132t)2 ≡ 3 mod
133, or 676 + 1352t ≡ 0 mod 133. This gives 4 + 8t ≡ 0 mod 13, so t = 6. Thus
we have x = (4, 8, 6, ...).
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4 Problem 21.3

Show that any u ≡ 1 (8) in Z2 is a square in Z2.

Proof. We use the generalization of Hensel’s lemma described in Problem 21.2.
Let f(X) = X2 − u. Suppose x ∈ Z2 satisfies f(x) ≡ 0 mod 2n = 8. Note
n = 3. Then x2 ≡ 1 mod 8, from which we can only conclude x ≡ 1 mod
2. However, this means that k = ν2(f

′(x)) = ν2(2x) = 1. Then we have the
condition 0 ≤ 2k < n. Therefore there is a solution to f(y) = 0 in Z2, meaning
u = y2 is a square.
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