MATH 7220 Homework 8

Andrea Bourque

March 2022

1 Problem 15.3

Show that $A = \mathbb{C}[x, y]/(y^2 - x^3)$ is an integral domain. Show that its field of fractions is $K = \mathbb{C}(y/x)$. Show that the integral closure of A in K is $\mathbb{C}[y/x]$. Draw the picture $y^2 - x^3 = 0$.

Proof. $y^2 - x^3$ is irreducible over $\mathbb{C}[x, y]$, so $(y^2 - x^3)$ is a prime ideal; thus, A is an integral domain. Note that $x = x^3/x^2 = y^2/x^2 = (y/x)^2$, and $y = x(y/x) = (y/x)^3$. Thus any rational function in x, y can be written as a rational function in y/x. Furthermore, this is obtained just by adjoining the inverse of x into the ring, so $\mathbb{C}(y/x)$ is the smallest field in which elements of A are invertible.

Write t = y/x. Then $A = \mathbb{C}[t^2, t^3]$ and $K = \mathbb{C}(t)$. $R := \mathbb{C}[y/x] = \mathbb{C}[t]$ is a UFD, so it is integrally closed in K, which is its field of fractions. t is a root of the monic polynomial $X^2 - t^2$ in A[X], i.e. t is integral over A. Thus R is integral over A. Since R is integrally closed, R is the integral closure of A in K.

2 Problem 15.4

Show that the ring $A = \mathbb{C}[x, y]/(y^2 - x^2(x+1))$ is an integral domain. Show that its field of fractions is $K = \mathbb{C}(y/x)$. Show that the integral closure of A in K is $\mathbb{C}[y/x]$. Draw the picture $y^2 - x^2(x+1) = 0$.

Proof. $y^2 - x^2(x+1)$ is irreducible over $\mathbb{C}[x, y]$, so $(y^2 - x^2(x+1))$ is a prime ideal; thus, A is an integral domain. Note that $x = x^3/x^2 = (y^2 - x^2)/x^2 = (y/x)^2 - 1$, and $y = x(y/x) = (y/x)^3 - y/x$. Thus any rational function in x, y can be written as a rational function in y/x. Furthermore, this is obtained just by adjoining the inverse of x into the ring, so $\mathbb{C}(y/x)$ is the smallest field in which elements of A are invertible.

Write t = y/x. Then $K = \mathbb{C}(t)$ and $A = \mathbb{C}[t^2 - 1, t^3 - t]$. Let $R = \mathbb{C}[y/x] = \mathbb{C}[t]$. R is a UFD, so it is integrally closed in its field of fractions, which is K. t is a root of the monic polynomial $X^2 - 1 - (t^2 - 1)$ in A[X]. Thus R is integral over A, so that R is the integral closure of A in K.

