MATH 7220 Homework 7

Andrea Bourque

February/March 2022

1 Problem 13.1

Let $\phi : A \to B$ be a ring homomorphism, with $\phi^* : Y \to X$ the induced map on X = Spec(A), Y = Spec(B). Show that if \mathfrak{b} is an ideal of B, then $\overline{\phi^*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$.

Proof. Recall that the closure of a set $E \subset X$ is given by V(I(E)). With $E = \phi^*(V(\mathfrak{b}))$, we wish to show $I(E) = \mathfrak{b}^c$. We may assume \mathfrak{b} to be a radical ideal, since then \mathfrak{b}^c is as well. $f \in I(E)$ is equivalent to f(x) = 0 for all $x \in E$, which is equivalent to $\phi(f)(x) = 0$ for all $x \in V(\mathfrak{b})$, which is equivalent to $\phi(f) \in I(V(\mathfrak{b})) = r(\mathfrak{b}) = \mathfrak{b}$. Thus $f \in I(E)$ is equivalent to $f \in \mathfrak{b}^c$ as desired.

2 Problem 13.2

Show that X = Spec(A) is quasi-compact (every open cover has a finite subcover).

Proof. The standard open sets $X_f = X - V(f)$ for $f \in A$ form a basis, so we can take an open covering by $X_{f_{\alpha}}$. If the f_{α} do not generate the ring, then the ideal they generate will be contained in some maximal ideal \mathfrak{m} . Then $f_{\alpha} \in \mathfrak{m}$ for all α , or equivalently, $\mathfrak{m} \notin X_{f_{\alpha}}$. This contradicts the fact that the $X_{f_{\alpha}}$ cover X. Thus the f_{α} generate A. In particular, there is some finite sum $\sum_{i=1}^{n} g_i f_{\alpha_i} = 1$. Then the f_{α_i} must generate A, which implies that the $X_{f_{\alpha_i}}$ are a finite cover of X.

3 Problem 13.3

Let X = Spec(A) where A is Noetherian. Show that every open subset of X is quasi-compact.

Proof. From general topology, we know that a finite union of quasi-compact sets is quasi-compact. Thus we claim that every open subset is a finite union of standard open sets, and that the standard open sets are quasi-compact.

Towards the first claim, take an open set U which is the complement of a closed set $V(\mathfrak{a})$ for an ideal \mathfrak{a} . Since A is Noetherian, \mathfrak{a} is finitely generated; $\mathfrak{a} = (f_1, ..., f_n)$. Then $V(\mathfrak{a})$ is the intersection of the $V(f_i)$, which means U is the union of the X_{f_i} .

Now let X_f be a standard open set. X_f can be identified as the spectrum of A_f , the localization of A away from f. Thus by the Problem 13.2, X_f is quasi-compact.

4 Problem 14.1

Show that the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{5})$ is the set of elements $(a+b\sqrt{5})/2$, where $a, b \in \mathbb{Z}$ have the same parity.

Proof. Let $z = x + y\sqrt{5} \in \mathbb{Q}(\sqrt{5})$. The norm and trace of z are $x^2 - 5y^2$ and 2x respectively. For z to be integral, we must have $x^2 - 5y^2, 2x \in \mathbb{Z}$. Thus let x = a/2 for $a \in \mathbb{Z}$.

If a is even, then $x \in \mathbb{Z}$. This means $5y^2 \in \mathbb{Z}$, which means $y \in \mathbb{Z}$. Hence y = b/2 for some even integer b.

If a is odd, say a = 2c + 1, then x = c + 1/2. $x^2 = c^2 + c + 1/4$, so we have $1/4 - 5y^2 \in \mathbb{Z}$. Put y = m/n to get $(n^2 - 20m^2)/4n^2 = k\mathbb{Z}$, so that $20m^2 = (1 - 4k)n^2$ or $y^2 = (1 - 4k)/20$. 1 - 4k is odd, so the factor of 4 in the denominator cannot cancel out. Thus y = b/2 for b an odd integer.

Thus $x + y\sqrt{5} = (a + b\sqrt{5})/2$ for a, b integers of the same parity.

5 Problem 14.2

Let $f : A \to B$ be an integral morphism of rings. Show that $f^* : \text{Spec}(B) \to \text{Spec}(A)$ is a closed mapping. (See (5.10))

Proof. Recall that f being integral means B is integral over f(A). Let C = f(A). Note that $C \cong A/\ker f$, so the image of $\operatorname{Spec}(C)$ in $\operatorname{Spec}(A)$ is canonically $V(\ker f)$. Thus if the map $\operatorname{Spec} B \to \operatorname{Spec} C$ is closed, we will be done.

Now, C is a subring of B, and B is integral over C. For an ideal \mathfrak{b} in B, we have that B/\mathfrak{b} is integral over C/\mathfrak{b}^c . By the prime lifting property, we then have $\operatorname{Spec}(B/\mathfrak{b}) \to \operatorname{Spec}(C/\mathfrak{b}^c)$ is surjective. But again, we can identify $\operatorname{Spec}(B/\mathfrak{b})$ as $V(\mathfrak{b})$ and $\operatorname{Spec}(C/\mathfrak{b}^c)$ as $V(\mathfrak{b}^c)$. The map $\operatorname{Spec}(B/\mathfrak{b}) \to \operatorname{Spec}(C/\mathfrak{b}^c)$ is simply a restriction of the map $\operatorname{Spec}(B) \to \operatorname{Spec}(C)$, so we have shown that the image of $V(\mathfrak{b})$ in $\operatorname{Spec}(C)$ is $V(\mathfrak{b}^c)$, which is closed. Thus $\operatorname{Spec}(B) \to \operatorname{Spec}(C)$ is closed as desired. \Box

6 Problem 14.3

Let A be a subring of B such that B is integral over A, and let $f : A \to \Omega$ be a morphism of A into an algebraically closed field Ω . Show that f can be extended to a morphism of B into Ω . (Use (5.10)).

Proof. We note that ker f is prime in A: $A/\ker f$ is isomorphic to the image of f, which is a subring of Ω . Subrings of fields are necessarily integral domains, so ker f is prime. Then $\mathfrak{p} = \ker f$ can be lifted to a prime \mathfrak{q} in B. Note that B/\mathfrak{q} is an integral domain, and also an integral extension of A/\mathfrak{p} . We can factor f through the map $A \to A/\mathfrak{p}$, giving a map $A/\mathfrak{p} \to \Omega$. From proposition 5.23 in Atiyah-Mac Donald, this can be extended to a map $B/\mathfrak{q} \to \Omega$. Pre-composing with the quotient map $B \to B/\mathfrak{q}$ gives the desired extension of f.