MATH 7220 Homework 4

Andrea Bourque

February 2022

1 Problem 6.2

Now let $F : \mathbf{A}^{\circ} \to \mathbf{Set}$ be any contravariant functor. Prove Yoneda's Lemma: For any object A there is a canonical bijection $\alpha : \operatorname{Hom}_{\operatorname{Functors}}(h^A, F) \to F(A)$.

Proof. For $f: h^A \to F$, let $\alpha(f) = f(A)(1_A)$. We let $\beta: F(A) \to \operatorname{Hom}_{\operatorname{Functors}}(h^A, F)$ be defined as follows. For $x \in F(A)$, let $\beta(x)$ be such that $\beta(x)(B)$ sends $u \in h^A(B)$ to F(u)(x). Now let $g: B \to C$ in **A**. We must show $\beta(x)(B) \circ h^A(g) = F(g) \circ \beta(x)(C)$. Let $u \in h^A(C)$. Then $\beta(x)(B) \circ h^A(g)(u) = \beta(x)(B)(u \circ g) = F(u \circ g)(x)$, and $F(g) \circ \beta(x)(C)(u) = F(g)(F(u)(x)) = F(u \circ g)(x)$, where the last step follows from F being a contravariant functor. Thus $\beta(x)$ is a natural transformation.

 $\begin{array}{l} \alpha(\beta(x)) \ = \ \beta(x)(A)(1_A) \ = \ F(1_A)(x) \ = \ 1_{F(A)}(x) \ = \ x, \text{ using that } F \text{ is a functor in the second to last equality. For } f:h^A \to F, \ \beta(\alpha(f)) \ = \ \beta(f(A)(1_A)) \\ \text{is a natural transformation. For objects } B, \ \beta(f(A)(1_A))(B) \text{ sends } u \in h^A(B) \text{ to } F(u)(f(A)(1_A)). \\ \text{ Using naturality of } f, \ F(u)(f(A)(1_A)) \ = \ f(B)(h^A(u)(1_A)) \ = \\ f(B)(1_A \circ u) \ = \ f(B)(u). \\ \text{ Thus } \beta(f(A)(1_A)) \ = \ f \text{ and we are done.} \\ \end{array}$

2 Problem 6.3

Show that for objects A, B in \mathbf{A} , there is a canonical bijection $\operatorname{Hom}_{\operatorname{Functors}}(h^A, h^B) \to \operatorname{Hom}_{\mathbf{A}}(A, B)$.

Proof. This is just Yoneda's lemma for $F = h^B$; $h^B(A) = \text{Hom}(A, B)$.

3 Problem 6.4

Given a morphism $u: A \to B$ in **A**, show that there are natural transformations $h^u: h^A \to h^B$ and $h_u: h_B \to h_A$.

Proof. Using the above canonical bijection $\operatorname{Hom}_{\operatorname{Functors}}(h^A, h^B) \to \operatorname{Hom}_{\mathbf{A}}(A, B)$, any $u: A \to B$ determines some natural transformation $h^u: h^A \to h^B$. Using the covariant form of Yoneda's lemma for the functor h_A , we have a natural bijection $\operatorname{Hom}_{\operatorname{Functors}}(h_B, h_A) \to h_A(B) = \operatorname{Hom}(A, B)$. Thus $u: A \to B$ determines a natural transformation $h_u: h_B \to h_A$. \Box

4 Problem 7.1

Give examples of the following:

- An exact sequence of A-modules $0 \to M \to N \to P \to 0$ and an A-module T such that:
 - 1. $\operatorname{Hom}(T, N) \to \operatorname{Hom}(T, P)$ is not surjective.
 - 2. $\operatorname{Hom}(N,T) \to \operatorname{Hom}(M,T)$ is not surjective.
 - 3. $M \otimes T \to N \otimes T$ is not injective.

Proof. Throughout we take the exact sequence $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2\mathbb{Z} \to 0$ of \mathbb{Z} modules, and $T = \mathbb{Z}/2\mathbb{Z}$.

1. This gives $0 \to 0 \to 0 \to \mathbb{Z}/2\mathbb{Z} \to 0$; $\operatorname{Hom}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) = 0$ because if f(1) = n in \mathbb{Z} , we would have 2n = 2f(1) = f(0) = 0. The 0 map into $\mathbb{Z}/2\mathbb{Z}$ is not surjective.

2. This gives $0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \stackrel{0}{\to} \mathbb{Z}/2\mathbb{Z} \to 0$; $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$ since there are two morphisms, one sending $1 \in \mathbb{Z}$ to $1 \in \mathbb{Z}/2\mathbb{Z}$, and the other sending 1 to 0. The map $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ is given by $f \mapsto g$ such that g(n) = f(2n). But f(2n) = 0 for $f \in \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$, so this is indeed the zero map. The 0 map into $\mathbb{Z}/2\mathbb{Z}$ is not surjective.

3. This gives $0 \to \mathbb{Z}/2\mathbb{Z} \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$; the multiplication by 2 map is 0 on $\mathbb{Z}/2\mathbb{Z}$. The zero map out of $\mathbb{Z}/2\mathbb{Z}$ is not injective.

5 Problem 7.2

Calculate $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ and $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ for all $i \geq 0$.

Proof. First we compute the $\operatorname{Ext}^{i}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ and $\operatorname{Tor}_{i}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ for $i \geq 0$. At i = 0 we have $\operatorname{Ext}^{0} = \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} = \operatorname{Tor}_{0}$. We take the exact sequence $0 \to \mathbb{Z} \xrightarrow{=} \mathbb{Z} \to 0 \to 0$.

For Ext we get

$$0 \to \operatorname{Hom}(0, \mathbb{Z}/n\mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \to \dots$$

Replacing the Hom terms by what we know gives

$$0 \to 0 \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{=} \mathbb{Z}/n\mathbb{Z} \to \operatorname{Ext}^{1}(0, \mathbb{Z}/n\mathbb{Z}) \to \dots$$

Since $0 \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{=} \mathbb{Z}/n\mathbb{Z} \to 0$ is exact, we see that this sequence must terminate and we get that $\operatorname{Ext}^{i}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 0.

For Tor we get

$$0 \leftarrow 0 \otimes \mathbb{Z}/n\mathbb{Z} \leftarrow \mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}..$$

Replacing the tensor product terms by what we know gives

 $0 \leftarrow 0 \leftarrow \mathbb{Z}/n\mathbb{Z} \xleftarrow{=} \mathbb{Z}/n\mathbb{Z} \leftarrow \operatorname{Tor}_1(0, \mathbb{Z}/n\mathbb{Z}) \leftarrow \dots$

Since $0 \leftarrow \mathbb{Z}/n\mathbb{Z} \stackrel{=}{\leftarrow} \mathbb{Z}/n\mathbb{Z} \leftarrow 0$ is exact, we have that the sequence terminates and we get that $\operatorname{Tor}_i(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 0.

We now return to the general problem. Throughout, let $d = \gcd(m, n)$. For i = 0 we have $\operatorname{Ext}^0(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = \operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z} = \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} = \operatorname{Tor}_0(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$. In particular if d = 1, these groups are trivial. Take the exact sequence $0 \to \mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to 0$.

For Ext we get

$$0 \to \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{\times m} \mathbb{Z}/n\mathbb{Z} \to \mathrm{Ext}^{1}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \to 0 \to 0 \to \mathrm{Ext}^{2} \to \dots$$

since $\operatorname{Ext}^{i}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 0. This implies $\operatorname{Ext}^{i}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 1. Then by exactness, $\operatorname{Ext}^{1}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = (\mathbb{Z}/n\mathbb{Z})/m(\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$.

For Tor we get

$$0 \leftarrow \mathbb{Z}/d\mathbb{Z} \leftarrow \mathbb{Z}/n\mathbb{Z} \xleftarrow{\times m} \mathbb{Z}/n\mathbb{Z} \leftarrow \operatorname{Tor}_1(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \leftarrow 0 \leftarrow 0 \leftarrow \operatorname{Tor}_2 \leftarrow \dots$$

since $\operatorname{Tor}_i(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 0. This implies $\operatorname{Tor}_i(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0$ for i > 1. By exactness, $\operatorname{Tor}_1(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ is the kernel of the multiplication by m map on $\mathbb{Z}/n\mathbb{Z}$, which is $\mathbb{Z}/d\mathbb{Z}$.

For readability (note $d = \gcd(m, n)$):

$$\operatorname{Ext}^{i}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z} \text{ for } i = 0, 1; \operatorname{Ext}^{i} = 0 \text{ otherwise,}$$
$$\operatorname{Tor}_{i}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z} \text{ for } i = 0, 1; \operatorname{Tor}_{i} = 0 \text{ otherwise.}$$