MATH 7220 Homework 1

Andrea Bourque

January 2022

1 Problem 1

Let $\varphi: \mathbb{Z}[x,y] \to \mathbb{Z}[t]$ be the homomorphism $\varphi(f(x,y)) = f(t^2,t^3)$. Show that $\ker \varphi = (y^2 - x^3)$.

Proof. We have $y^2-x^3\in\ker\varphi$ since $\varphi(y^2-x^3)=(t^3)^2-(t^2)^3=t^6-t^6=0$. Thus $(y^2-x^3)\subset\ker\varphi$.

Let $f \in \ker \varphi$. We work mod $y^2 - x^3$, so that $f(x,y) \equiv g(x)y + h(x)$ for some $g,h \in \mathbb{Z}[x]$. Then $g(t^2)t^3 + h(t^2) = 0$. However, all the terms of $g(t^2)t^3$ have odd degree, and all the terms of $h(t^2)$ have even degree, implying that g = h = 0, and $f(x,y) \equiv 0 \mod y^2 - x^3$. Thus $\ker \varphi = (y^2 - x^3)$.

2 Problem 2

Let $\psi: \mathbb{Z}[x,y,z] \to \mathbb{Z}[t]$ be the homomorphism $\psi(f(x,y,z)) = f(t^3,t^4,t^5)$. Show that $\ker \psi = (xz - y^2, x^2y - z^2, x^3 - yz)$.

Proof. We have the inclusion $(xz-y^2,x^2y-z^2,x^3-yz) \subset \ker \psi$ since $t^3t^5-(t^4)^2=(t^3)^2t^4-(t^5)^2=(t^3)^3-t^4t^5=0$.

Let $f \in \ker \psi$. First, we work mod x^2y-z^2 , so that f(x,y,z)=g(x,y)z+h(x,y) for some $g,h \in \mathbb{Z}[x,y]$. Now let g(x,y)=a+xp(x,y)+yq(y). Reducing mod $xz-y^2$ and x^3-yz , we get $f=az+y^2p(x,y)+x^3q(y)+h(x,y)$. Applying ψ we have $at^5+t^8p(t^3,t^4)+t^9q(t^4)+h(t^3,t^4)=0$. Notice that $t^8p(t^3,t^4)+t^9q(t^4)+h(t^3,t^4)$ contains no terms of degree five, implying that a=0. Thus $f=y^2p(x,y)+x^3q(y)+h(x,y)\in \mathbb{Z}[x,y]$. Since $x^4-y^3=x(x^3-yz)+y(xz-y^2)$, we have $x^4=y^3$ in the ideal, so $f=b(x)y^2+c(x)y+d(x)$ and thus $b(t^3)t^8+c(t^3)t^4+d(t^3)=0$. The terms of $b(t^3)t^8$ have degrees which are $b(t^3)t^8+b(t^3)t^8+b(t^3)t^4+b(t^3)$

3 Problem 3

What does $\{(x,y)\in\mathbb{C}^2\mid x^2+y^2=1\}\subset\mathbb{A}^2(\mathbb{C})$ look like?

Proof. Let $x^2+y^2=1$. We can factor (x+iy)(x-iy)=1. Introducing the substitution u=x+iy, v=x-iy we have $uv=1, x=\frac{u+v}{2}, y=\frac{u-v}{2i}$. Thus $\{(x,y)\in\mathbb{C}^2\mid x^2+y^2=1\}\cong\{(u,v)\in\mathbb{C}^2\mid uv=1\}$. Next, given $u\in\mathbb{C}-\{0\}$, we can always find v=1/u so that uv=1. Similarly, if uv=1, then $u\in\mathbb{C}-\{0\}$. Thus $\{(u,v)\in\mathbb{C}^2\mid uv=1\}\cong\mathbb{C}-\{0\}$. Since \mathbb{C} can be considered a once-punctured sphere via stereographic projection, $\mathbb{C}-\{0\}$ is then a twice-punctured sphere.

4 Problem 4

Prove that the following conditions on an R-module M, where R is a commutative ring, are equivalent:

- 1) Every submodule of M is finitely generated.
- 2) Every ascending chain of submodules of M terminates.
- 3) Every set of submodules of M contains a maximal element under inclusion.
- 4) Given any sequence of elements $f_1, f_2, ... \in M$, there is a number m such that for each n > m there is an expression $f_n = \sum_{i=1}^m a_i f_i$ with $a_i \in R$.

Proof. $(1 \to 2)$ Let $N_1 \subset N_2 \subset ...$ be an ascending chain of submodules. We first show that $N = \bigcup_{i=1}^{\infty} N_i$ is a submodule of M. For two elements $x,y \in N$, we have $x \in N_i, y \in N_j$ for some $i,j \in \mathbb{N}$. WLOG, suppose $i \leq j$, so that $x \in N_j$. Then all the module conditions are satisfied since x,y are elements of the same submodule of M. By hypothesis N is finitely generated, say $N = (x_1, ..., x_n)$. Each x_i is contained in some N_{j_i} for i = 1, ..., n. Taking j to be the maximum of $j_1, ..., j_n$, then $x_i \in N_j$ for each i = 1, ..., n. Then $N = (x_1, ..., x_n) \subset N_j \subset N_{j+1} \subset ... \subset N$, implying $N_j = N_{j+1} = ... = N$.

 $(2 \to 3)$ Let \mathcal{N} be a collection of submodules of M. Let $N_1 \in \mathcal{N}$. If there is no $N \in \mathcal{N}$ containing but not equal to N_1 , then N_1 is maximal and we are done. Otherwise, let $N_2 \in \mathcal{N}$ such that $N_1 \subset N_2$. We repeat this process. If at some point we have $N_1 \subset N_2 \subset ...N_i$ and N_i is maximal, we are done. Otherwise, suppose we repeat this process indefinitely. We get an ascending chain $N_1 \subset N_2 \subset ...$ of submodules. By hypothesis, this chain must terminate. In particular, $N_i = N_{i+1} = ...$ for some $i \in \mathbb{N}$. This contradicts the choice of N_{i+1} to be not equal to N_i , implying N_i is maximal.

 $(3 \to 4)$ Let $f_1, f_2, ... \in M$. Consider the collection of submodules $\{(f_1), (f_1, f_2), ...\}$. By hypothesis there is a maximal element, which is of the form $(f_1, f_2, ..., f_m)$ for some $m \in \mathbb{N}$. However, if n > m, we trivially have that $(f_1, f_2, ..., f_m) \subset (f_1, ..., f_n)$. By the maximal condition, this means $(f_1, f_2, ..., f_m) = (f_1, ..., f_n)$. Thus $f_n \in (f_1, ..., f_m)$, implying there is an expression $f_n = \sum_{i=1}^m a_i f_i$ with $a_i \in R$.

 $(4 \to 1)$ Let N be a submodule of M. Let $f_1 \in N$. If $(f_1) = N$, we are done. If $N = (f_1, ..., f_i)$ for $i \ge 1$, we are done. Otherwise, we can choose $f_{i+1} \in N - (f_1, ..., f_i)$ for all i. In such a way we have a sequence of elements $f_1, f_2, ... \in N \subset M$. By hypothesis, there is $m \in \mathbb{N}$ such that for n > m, $f_n = \sum_{i=1}^m a_i f_i$ for $a_i \in R$. But this means that $f_{m+1} \in (f_1, ..., f_m)$, a contradiction. Thus N must be finitely generated.