MATH 7211 Homework 4

Andrea Bourque

May 9, 2023

1 Problem 13.4.5

Let K/F be a finite extension. Prove that K is a splitting field of a polynomial over F if and only if every irreducible polynomial in F[x] that has a root in K splits in K[x].

Proof. Let K be a splitting field of a polynomial $f(x) \in F[x]$. Since K/F is finite and hence algebraic, there is an algebraic closure of F which contains K, which we denote by \bar{F} . Without loss of generality, assume f(x) is monic. Let $K = F(\alpha_1, ..., \alpha_n)$, where the roots of f(x) are $\alpha_1, ..., \alpha_n$ (possibly with repetition). Let $p(x) \in F[x]$ be irreducible with root $\beta \in K$. Let $\gamma \in \bar{F}$ be another root of p(x). By Theorem 8 in Dummit and Foote Chapter 13, there is an isomorphism $F(\beta) \to F(\gamma)$ extending the identity $F \to F$. Let K' be a splitting field of f(x) over $F(\gamma)$, taken to also be contained in \bar{F} . By Theorem 27 in Dummit and Foote Chapter 13, there is an isomorphism $\phi: K \to K'$ extending the isomorphism $F(\beta) \to F(\gamma)$. Since ϕ also extends the identity on F, it must fix f(x). Therefore, it must permute the roots α_i of f(x), which are the generators of K. That is, $\phi(K)$ must be exactly K. Since K' contains γ , this means K contains γ as well. Since γ was chosen arbitrarily, it follows that K contains every root of p(x), i.e. p(x) splits over K.

Conversely, suppose every irreducible polynomial in F[x] that has a root in K splits in K[x]. Since K/F is a finite extension, we may write $K = F(\alpha_1, ..., \alpha_n)$ for some elements $\alpha_1, ..., \alpha_n \in K$. By hypothesis, each minimal polynomial $m_{\alpha_i,F}(x)$ splits in K[x]. Then K contains the splitting field of $f(x) = \prod_i m_{\alpha_i,F}(x)$. But the splitting field of f(x) is generated by the roots of f(x), which are all in K, so the splitting field is contained in K. Thus K is exactly equal to the splitting field of f(x) over F.

2 Problem 13.5.4

Let a, d, n be positive integers, with a > 1. Prove that d divides n if and only if $a^d - 1$ divides $a^n - 1$. Conclude that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.

Proof. First suppose n = dk for a positive integer k. Then

$$a^{n} - 1 = (a^{d})^{k} - 1^{k} = (a^{d} - 1)(a^{d(k-1)} + \dots + 1),$$

so a^d-1 divides a^n-1 . Conversely, suppose a^d-1 divides a^n-1 . Write n=qd+r with r< d. Then $a^n-1=a^r(a^{qd}-1)+a^r-1$. By the previous analysis, a^d-1 divides $a^{qd}-1$ and hence $a^r(a^{qd}-1)$. Thus a^d-1 must divide a^r-1 . But r< d, so $a^r-1< a^d-1$, since a>1. The only way a positive integer can divide a non-negative integer less than it is if the smaller integer is 0. Thus $a^r-1=0$, so r=0, so n=qd, so d divides divides d.

Recall that \mathbb{F}_{p^k} is the splitting field of $x^{p^k-1}-1$ over $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ (shown in Dummit and Foote, Section 13.5). Then $\mathbb{F}_{p^d}\subseteq \mathbb{F}_{p^n}$ if and only if all the roots of $x^{p^d-1}-1$ are roots of $x^{p^n}-1$, i.e. $x^{p^d-1}-1$ divides $x^{p^n-1}-1$. By Dummit and Foote exercise 13.5.3, this is equivalent to p^d-1 dividing p^n-1 . By the previous work in this exercise, this is equivalent to d dividing n.

3 Problem 13.5.6

Prove that $x^{p^n-1}-1=\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}(x-\alpha)$. Conclude that $\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}\alpha=(-1)^{p^n}$. For p>2 and n=1, conclude that $(p-1)!\equiv -1\mod p$.

Proof. As noted in Dummit and Foote section 13.5, the p^n elements of \mathbb{F}_{p^n} are exactly the distinct roots of $x^{p^n} - x$. Removing the factor of x corresponding to the root of 0, we get the factorization in the problem statement.

Substituting x=0 into the factorization gives $-1=\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}(-\alpha)$. Since $F_{p^n}^{\times}$ has p^n-1 elements, $\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}(-\alpha)=(-1)^{p^n-1}\prod_{\alpha\in\mathbb{F}_{p^n}^{\times}}\alpha$. Multiplying both sides by $(-1)^{p^n-1}$ gives the second desired result.

Finally, when n=1 we have $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$, so the non-zero elements are $\{1 \mod p,...,p-1 \mod p\}$. Thus for p odd we have $\prod_{\alpha\in\mathbb{F}_p^\times}\alpha=-1$, or $(p-1)!\equiv -1$ mod p.

4 Problem 13.5.8

Prove that $f(x)^p = f(x^p)$ for any polynomial $f(x) \in \mathbb{F}_p[x]$.

Proof. We induct on the degree of f(x). For f(x) constant, the statement is that $a^p=a$ for any $a\in\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$, which is the statement of Fermat's little theorem. Thus let $f(x)=ax^n+g(x)$, where $a\in\mathbb{F}_p$ and $g(x)\in\mathbb{F}_p[x]$ has degree strictly less than n. Then

$$f(x)^{p} = (ax^{n} + g(x))^{p} = a^{p}(x^{n})^{p} + g(x)^{p}$$
$$= a(x^{p})^{n} + g(x^{p}) = f(x^{p})$$

as desired. \Box

5 Problem 13.6.4

Prove that if $n = p^k m$ where p is a prime not dividing m, then there are precisely m distinct nth roots of unity over a field of characteristic p.

Proof. First suppose p does not divide n, i.e. k=0. Then x^n-1 is separable over a field of characteristic p, since its derivative nx^{n-1} is nonzero has can only have roots at x=0, which is not a root of x^n-1 . Thus the n nth roots of unity are all distinct by Proposition 33 in section 13.5 of Dummit and Foote.

Recall that in a field of characteristic p, we have $(x+y)^p = x^p + y^p$ for any field elements x, y. Applying this equation k times gives $(x+y)^{p^k} = x^{p^k} + y^{p^k}$. Also, note that in a field of characteristic two, 1 = -1. Then the equation $-1 = (-1)^{p^k}$ is true in a field of characteristic p, regardless of whether p is even or odd.

Now, for $n = p^k m$ as in the statement of the problem, we have

$$x^{n} - 1 = (x^{m})^{p^{k}} - 1^{p^{k}} = (x^{m} - 1)^{p^{k}}.$$

Thus if $x^n - 1 = 0$, we must have $x^m - 1 = 0$. Since p does not divide m, our earlier work shows that there are m distinct solutions to $x^m - 1 = 0$. Therefore, these m distinct mth roots of unity are exactly the distinct nth roots of unity.