MATH 7211 Homework 11

Andrea Bourque

May 9, 2023

1 Problem 18.1.2

Let $\varphi: G \to GL_n(F)$ be a matrix representation. Prove that the map $g \mapsto \det(\varphi(g))$ is a degree 1 representation.

Proof. From linear algebra, we know that $\det(AB) = \det(A) \det(B)$ for any two n by n matrices A, B. Furthermore, $A \in GL_n(F)$ means $\det(A) \in F$ is invertible, so that $\det: GL_n(F) \to F^{\times}$ is a homomorphism. Since compositions of homomorphisms is a homomorphism, and F^{\times} is the same thing as $GL_1(F)$, the map $\det \circ \varphi: G \to GL_1(F)$ is a homomorphism, i.e. it is a degree 1 representation of G.

Prove that the degree 1 representations of G are in bijection with the degree 1 representations of G/[G,G].

Proof. Let $\varphi:G\to GL(V)$ be a degree 1 representation of G, so V is a 1-dimensional F-vector space. Let $a,b\in G$. Then $\varphi([a,b])=\varphi(a)\varphi(b)\varphi(a)^{-1}\varphi(b)^{-1}=1$, since anything in $\mathrm{im}\varphi\subset GL(V)=F^\times$ commutes. Since any commutator is in the kernel of φ and commutators generate [G,G], the whole of [G,G] must be in $\ker\varphi$. Then we have a well-defined quotient homomorphism $\bar\varphi:G/[G,G]\to GL(V)$ defined by $\bar\varphi(g[G,G])=\varphi(g)$, i.e. a degree 1 representation of G/[G,G]. Conversely, given a degree 1 representation ψ of G/[G,G], let $\bar\psi=\psi\circ\pi$, where $\pi:G\to G/[G,G]$ is the quotient homomorphism. Then $\bar\psi$ is a homomorphism $G\to GL(V)$, so it is a degree 1 representation. To show that these processes are inverses, we must show that $\varphi=\overline\varphi\circ\pi$ and $\psi=\overline\psi\circ\pi$. This is clear from the definitions:

$$(\overline{\varphi} \circ \pi)(g) = \overline{\varphi}(g[G,G]) := \varphi(g),$$
$$(\overline{\psi \circ \pi})(g[G,G]) := (\psi \circ \pi)(g) = \psi(g[G,G]).$$

Thus we have a bijection as desired.

Let V be the 4-dimensional permutation module for S_4 . Let $\pi: D_8 \to S_4$ be the permutation representation of D_8 obtained from left multiplication on left cosets of $\langle s \rangle$. Make V into an FD_8 -module via π and write out the 4×4 matrices for r and s given by this representation with respect to $e_1, ..., e_4$.

Proof. The left cosets may be written $S_1 = \{e, s\}, S_2 = \{r, rs\}, S_3 = \{r^2, r^2s\}, S_4 = \{r^3, r^3s\}$. As in the text of Dummit and Foote, we can make V an FD_8 -module by $g \cdot e_i = e_{\pi(g)(i)}$. To write the matrices for r and s, it suffices to compute $\pi(r)$ and $\pi(s)$. To compute these permutations, we must compute rS_i and sS_i for each i. The trivial case is $rS_i = S_{i+1}$ for i = 1, 2, 3, and $rS_4 = S_1$, where at the end we use $r^4 = e$. The computation that requires more work is for sS_i . Clearly $sS_1 = S_1$. Then, $sS_2 = \{sr, srs\}$. Using the relation rsr = s, we have that $sr = r^3s$, so $sS_2 = S_4$. Next, $sS_3 = \{sr^2, sr^2s\}$. Using rsr = s again, we see that $r^2sr^2 = r(rsr)r = rsr = s$, so $r^2s = sr^2$. Thus $sS_3 = S_3$. Finally, $sS_4 = \{sr^3, sr^3s\} = S_2$, since as we saw before, $r^3s = sr$, so $sr^3s = r$.

In summary, $\pi(r)$ is the cycle (1234) and $\pi(s)$ is the transposition (24). As matrices, we have

$$r = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

$$s = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Let V be the FS_n -module described in Examples 3 and 10.

(a) Prove that if $v \in V$ is fixed by S_n , then v is an F-multiple of $e_1 + e_2 + ... + e_n$.

Proof. Write $v = a_1e_1 + ... + a_ne_n$. Since v is fixed by the transposition (1k) for each k = 2, ..., n, we have that $(a_1, ..., a_k, ..., a_n) = (a_k, ..., a_1, ..., a_n)$, so $a_1 = a_k$ for k = 2, ..., n. Thus, $v = a_1(e_1 + ... + e_n)$ as desired.

(b) Prove that if $n \geq 3$, then V has a unique 1-dimensional submodule, namely the $N = \text{span } (e_1 + e_2 + \ldots + e_n)$.

Proof. Suppose that the span of $v \in V$ is a 1-dimensional submodule of V. Write $v = a_1e_1 + \ldots + a_ne_n$. For the span of v to be 1-dimensional, v must be non-zero, so there is some a_k which is non-zero. If some $a_i = 0$, then applying the transposition (ik) gives a multiple of v with zero e_k component. This is only possible if $(ik) \cdot v = 0$, but we know that $(ik) \cdot v$ is non-zero, since it has a non-zero e_i component. Therefore, all the coefficients of v are non-zero. Since $n \geq 3$, we can look at the transpositions (2k) for $k = 3, \ldots, n$. We have $(a_1, a_k, \ldots, a_2, \ldots, a_n)$ is a multiple of $(a_1, a_2, \ldots, a_k, \ldots, a_n)$. Since $a_1 \neq 0$, we then have $(a_1, a_2, \ldots, a_k, \ldots, a_n) = (a_1, a_k, \ldots, a_2, \ldots, a_n)$, or $a_2 = a_k$. Thus $a_2 = a_3 = \ldots = a_n$. In a similar manner, using the fact that $a_n \neq 0$, we can apply the transposition (12) to obtain $a_1 = a_2$. Thus $v = a_1(e_1 + \ldots + e_n)$. Since we started with an arbitrary 1-dimensional submodule of V and showed that it is spanned by (a multiple of) $e_1 + \ldots + e_n$, it follows that the span of $e_1 + \ldots + e_n$ is the unique 1-dimensional submodule.

Let $\varphi: S_n \to GL_n(F)$ be the matrix representation given by the permutation matrices. Prove that $\det(\varphi(\sigma)) = \operatorname{sgn}(\sigma)$ for all $\sigma \in S_n$. (check on transpositions).

Proof. Since S_n is generated by transpositions, it suffices to show this for the case where σ is a transposition, since $\det \circ \varphi$ and sgn are homomorphisms, and homomorphisms are determined by their images on generators. We know that the sign of a transposition is, by definition, -1. So, we must show that $\det(\varphi(\sigma)) = -1$ if σ is a transposition. This is obvious if we accept the definition of det in terms of alternating bilinear map on columns; then $\det(\varphi(\sigma)) = -\det(I_n) = -1$. For completeness, I will give a proof which uses induction and computing the determinant via minors.

The only transposition matrix in n=2 is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which clearly has determinant -1. Now let n>2. Suppose σ swaps i and j. For $k\neq i,j$, we must have $(\varphi(\sigma))_{kk}=1$, and, futhermore, this is the only non-zero entry in row k. Then we can expand the determinant along row k, giving that $\det \varphi(\sigma) = \det B$, where B is the corresponding minor of $\varphi(\sigma)$. Since both row and column k only have non-zero entry at (k,k), the minor B keeps all of the other non-zero entries of $\varphi(\sigma)$. In particular, B is a permutation matrix for S_{n-1} , so by induction, $\det B=-1$, and so, $\det \varphi(\sigma)=-1$ as desired.