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1 Problem 2

Let z € C.

a) Show that there is a unique irreducible monic polynomial p, € R[X] of
degree < 2 such that p,(z) = 0.

Proof. Let z = a + bi. Suppose b # 0. Consider p,(X) = (X — (a + bi))(X —
(a — bi)) = X? —2aX + a® + b?. Since the roots are both non-real and the
polynomial is degree 2, there is no way to factor over R, since that would imply
p. has real roots. By construction, p,(z) = 0.

If b =0, so that z = a € R, then p,(X) = X — a is clearly satisfies the
required conditions. O

b) Let ¢, : R[X] — C be the unique homomorphism extending R < C with
¢.(X) = z. Show that ker ¢, = (p.).

Proof. Note that a polynomial f(X) = ag + a1 X + ... + a, X™ is mapped to
0.(f(X)) =ao+ a1z + ... + ap,2" = f(z). Thus f € ker ¢, iff f(z) = 0. Then
any multiple of p, is in ker ¢, since ¢.(z)g(z) = 0 for any g € R[X]. If f(2) =0,

then f(z) = f(z) = 0. Thus f(X) is divisible by both X — z and X —Z, so it is
divisible by p,. Thus the kernel is exactly all multiples of p,; ker ¢, = (p,). O

¢) Show that R[X]/(p,) is isomorphic to R if z € R and to C otherwise.

Proof. By isomorphism theorem and part b, the quotient is equal to the image of
¢.. Clearly, the image contains R, since ¢,(R) = R. If z € R, then ¢,(X) € R,
and thus any element of R[X] is mapped into R. Then the image is just R.
Otherwise, ¢,(X) is nonreal. If z = a+bi, then ¢,((X —a)/b) = i, so the image
contains i and therefore every complex number, so the image is C. O



2 Problem 3

a) Show that (z,y) is a maximal ideal in Q[z,y] and that it is not principal.

Proof. The quotient Q[z,y]/(z,y) = Q, which is a field, so (z,y) is maximal.
It cannot be principal, since the ideal contains x and y, which are independent

variables and cannot be expressed as multiples of some other element in (z,y).
O

b) Show that (z,y) is a prime ideal in Z[x, y] which is not maximal. Find a
maximal ideal containing (z,y).

Proof. The quotient Zlz,y]/(z,y) = Z is an integral domain but not a field,
so (z,y) is prime but not maximal. Now consider the ideal (z,y,2). Then the
quotient Zlx, y]/(x,y,2) = Z/2Z, which is a field, so (z,y, 2) is a maximal ideal.
It contains (z,y) since it is (z,y) with an extra generator. O



3 Problem 8.3.6

a) Prove that the quotient ring Z[i]/(1 + 7) is a field of order 2.

Proof. In Z[i], the only relation is 2> = —1. Taking the quotient by (1 + 4)
adds the relation i = —1. Squaring both sides gives —1 = 1, so 2 = 0. Thus
Z[i/(1 + i) = 7). 0

b) Let ¢ € Z be a prime with ¢ = 3 mod 4. Prove that the quotient ring
Z[i]/(q) is a field with ¢* elements.

Proof. The quotient only has ¢? distinct elements, which are the equivalence
classes of a+bi fora =0,1,...,¢q—1and b= 0,1, ...,¢— 1, with equivalence given
by congruence mod ¢g. Consider the standard method for computing inverses
of complex numbers, i.e. by multiplying by the conjugate: (a + bi)~! = (a® +
b?)~1(a — bi). Suppose a + bi Z 0. Then a # 0 or b # 0. If either is congruent
to 0, then the other will be not congruent to 0 and will square to not zero, since
q is prime. (In other words, 2> = 0 mod prime implies = 0). Thus, assume
both a,b # 0. a? + b> = 0 then implies (ab=!)? = —1, where b~! exists mod ¢
since b #Z 0. But then ab~! is an order 4 element in (Z/qZ)*, which has order
g —1=2mod 4. This is a contradiction. Thus if a 4 bi #Z 0, a® + b*> # 0. Then
we can compute (a? + b%)~!(a — bi) mod ¢, so that every nonzero element has
an inverse. O

c¢) Let p € Z be a prime with p = 1 mod 4 and write p = 77 as in Proposition
18. Show that the hypotheses for the Chinese Remainder Theorem are satisfied
and that Z[i]/(p) = Z[i]/(7) x Z[i]/(T) as rings. Show that the quotient Z[:]/(p)
has order p? and conclude that Z[i]/(r) and Z[i]/(7) are both fields of order p.

Proof. First we show that (7)+ (%) = Z[i]. Observe that for 7 = a+bi, a,b must
be coprime. Indeed, since a? +b? = p is prime, the square of ged(a, b) divides p,
implying the gecd is 1. Thus for integers x,y, we can find integers x1, z2,y1, Y2
such that ax; + bxes = x and ay; + bys = y. Now, a,b cannot have the same
parity, as then a? + b> would be even. Thus one is even, one is odd. WLOG,
let @ be even and b odd. We then modify x;,y; such that 1 = y» mod 2, and
2 = y1. The modification is given by adding ab — ba = 0 to either equation,
which has the effect of changing the parity of the first variable, and keeping
the parity of the second. Thus we can assume x; = y» mod 2, and x5 = y;.
With this in mind, let ¢ = (z1 +v2)/2, e = (v1 — y2)/2, d = (y1 — x2)/2, and
f = (y1 + x2)/2; they are all integers. The merit of all of this work is that
(c+di)(a+bi)+ (e+ fi)(a — bi) = x + yi, as can be checked by computation.
The left hand side is an element of (7) + (7), while the right hand side is an
arbitrary element of Z[i], so we have (7) + (7) = Z[i].

Next, we show that (7)(7) = (p). Elements of the left hand side are sums
of terms of the form maTy = pzxy, so that (7)(7) C (p). On the other hand,
obviously p = 77 € (7)(T), so (p) C (7)(7). Thus we have the conditions for
CRT, so that Z[i]/(p) = Z[i]/(7) x Z[i]/ (7).



As in part b, Z[i]/(p) has p? distinct elements, namely the equivalence classes
of x + yi for z,y = 0,...,p — 1 mod p. Since the order of (finite) rings is
multiplicative, we have that the order of Z[i]/(r) is either 1,p, or p?. The
order is 1 iff (w) = Z[i]. This is clearly not the case by considering the norm
N(x +yi) = 2% + 92 on Z[i]. It is multiplicative, so that if 7 divides an element
z, N(r) divides N(z). We have N(7) = a® 4+ b? = p, while N(1) = 1, so clearly
(w) # Z[i]. Similarly, (7) # Z][i], which excludes the order of either quotient
ring being p?. Thus both have order p. O



4 Problem 8.3.8
Let R = Z[y/=5] and let I, = (2,1++/=5), I3 = (3,24++/=5), I} = (3,2—+/=5).

a) Prove that 2,3,1+ /=5, and 1 — /=5 are irreducibles in R, no two of
which are associate in R, and that 6 = 2-3 = (1 ++/-5)(1 — v/—5) are two
distinct factorizations of 6 into irreducibles in R.

Proof. We use the norm N(a + by/=5) = a? + 5b%. The norm is multiplica-
tive, i.e. N(zy) = N(z)N(y). Thus we can check irreducibility by looking at
factorizations of the norm. Note that N(a + by/=5) = 1 iff a + by/=5 = +1,
since b # 0 implies N(a + bv/=5) > 5, so we must have a?> = 1 and b = 0.
Thus, elements with norm 1 are units in R. Conversely, +1 are the only units
in R. To show this, suppose (a + by/—5)(c + dy/—5) = 1. Taking norms gives
N(a+by/=5)N(c+dy/-5)=1,s0 N(a+by/=5)=1. Thus N(z) =1 iff v is a
unit.

Now, suppose 2 = xy with z,y not units. N(2) =4 = N(z)N(y) implies
N(z) = 2. This is impossible; if z = a + b\/=5, N(z) < 5 implies b = 0, and
then a? = 2 is not solvable in Z. Similar logic works for the other elements.
If 3 = zy with z,y not units, then N(3) = 9 = N(z)N(y) implies N(x) = 3,
which implies z = a € Z with a? = 3, again impossible. If 1 £ /=5 = 2y with
x,y non units, N(1+/=5) = 6 = N(z)N(y) implies N(z) = 2 or 3, both of
which have been seen to be impossible.

Since the only units in R are £1, x,y are associates iff y = 2. Thus it is
obvious that none of 2,3,1 4+ /=5, and 1 — v/=5 are associates. Since none of
these elements are units nor associates of each other, 2-3 = (14++/=5)(1—+/=5)
give unique factorizations of 6. O

b) Prove that I, I3, and I} are prime ideals in R.

Proof. Write o = v/—5. The only relation in R is o®> = —5. Taking a quotient
by I gives extra relations 2 = 0 and a = —1. Squaring the second equation
gives —5 = 1, which is 6 = 0, which is also implied by 2 = 0, so there is no extra
information. Thus we just get R/(1 + i) = Z/2Z, which is an integral domain,
so I is prime.

Taking a quotient by I3 gives extra relations 3 = 0 and o = —2. Squaring
the latter gives —5 = 4 or 9 = 0, which is implied by 3 = 0. Thus R/I5 = Z/3Z,
which is an integral domain, so I3 is prime.

Taking a quotient by I% gives extra relations 3 = 0 and a = 2. Squaring the
latter gives —5 = 4 or 9 = 0, which is implied by 3 = 0. Thus R/Is = Z/3Z,
which is an integral domain, so I3 is prime. O

¢) Show that the factorizations in part a imply the equality of ideals (6) =
(2)(3) and (6) = (1++/—=5)(1 —+/—5). Show that these two ideal factorizations
give the same factorization of the ideal (6) as the product of prime ideals.



Proof. An element of (2) is of the form 2z, and an element of (3) is of the form 3y.
Thus elements in (2)(3) are of the form 2213y +...22,3yn = 6(x1y1 +... T Yn) €
(6). Thus (2)(3) C (6) Since 6 = 2 -3 € (2)(3), we have (6) C (2)(3). Thus
(6) = (2)(3). Similar logic follows for 14 +/—5, since (1++/=5)-(1—+/=5) =6
in R, so as ideals we have (6) = (1 + v/=5)(1 — v/=5).

We now decompose each of the principal ideals into their prime factors.
I3 has terms that are sums of terms (2a + b(1 + +/=5)(2c + d(1 + /=5)) =
2(2ac + ad + be — 2bd + (ad + bd + bc)y/=5) € (2), so we have I3 C (2). On
the other hand, 2 = (1 +v/=5)(2 — (1 + v=5)) + (=2)(2) € I3, so (2) C I3.
Thus I3 = (2). A similar argument shows that I3I; = (3), since (3a + 2b +
bv/=5)(3¢ + 2d — dv/=5) = 3(3ac + 2ad + 2bc + 3bd + (be — ad)y/=5) € (3) and
3 € I3I}. Thus we have (6) = (2)(3) = I3131}.

We do similar computations for the other ideals. Is13 is generated by sums
of terms of the form (2a+b-+bv/=5)(3c+2d+d+/=5) = [(ac+ad+bc)(1++/=5)—
2ad — 3bc — 3bd](1 — /=5) € (1 — v/=5). Again, we also have 1 — /=5 € I7I3
(Sorry grader I am too lazy to actually show this), so (1 + v/=5) = I5I3. For
LI} we have (2a+b+by/=5)(3c+2d—dy/=5) = [(ac+ad+bd)(1 —/—5—2ad +
bd +3bc)](1++/=5) € (1++/=5). Again, 1 ++/=5 € L1}, so I, I} = (14+/=5).
Thus (6) = (1 4+ +/=5)(1 — v/=5) = I3131}. Thus, the two factorizations of (6)
give the same prime factorization. O



5 Problem 9.6.7

Order the monomials 22z, 22y2z, xy%z, 23y, £322, 12, x%y2?, £222 for the lexico-
graphic ordering x > y > z, for the corresponding grlex order, and for the
grevlex ordering.

Proof. Lexicographic: z3y, 2322, 22y%z, 22y22, 2222, 222, 2%, zy°2.

Grlex: 2322, 2%y%z, 2%y2?, 23y, 2222, 2y’ 2, 222,

C 2,2 2 2,2 2, 2.2 .2
Grevlex: x2y?z, 2322, 22y22, 23y, vy’z, 2222, 222, O



