MATH 7210 Homework 9

Andrea Bourque

November 2021

1 Problem 2

Let $z \in \mathbb{C}$.

a) Show that there is a unique irreducible monic polynomial $p_z \in \mathbb{R}[X]$ of degree ≤ 2 such that $p_z(z) = 0$.

Proof. Let z = a + bi. Suppose $b \neq 0$. Consider $p_z(X) = (X - (a + bi))(X - (a - bi)) = X^2 - 2aX + a^2 + b^2$. Since the roots are both non-real and the polynomial is degree 2, there is no way to factor over \mathbb{R} , since that would imply p_z has real roots. By construction, $p_z(z) = 0$.

If b = 0, so that $z = a \in \mathbb{R}$, then $p_z(X) = X - a$ is clearly satisfies the required conditions.

b) Let $\phi_z : \mathbb{R}[X] \to \mathbb{C}$ be the unique homomorphism extending $\mathbb{R} \hookrightarrow \mathbb{C}$ with $\phi_z(X) = z$. Show that ker $\phi_z = (p_z)$.

Proof. Note that a polynomial $f(X) = a_0 + a_1X + \ldots + a_nX^n$ is mapped to $\phi_z(f(X)) = a_0 + a_1z + \ldots + a_nz^n = f(z)$. Thus $f \in \ker \phi_z$ iff f(z) = 0. Then any multiple of p_z is in $\ker \phi_z$, since $\phi_z(z)g(z) = 0$ for any $g \in \mathbb{R}[X]$. If f(z) = 0, then $\overline{f(z)} = f(\overline{z}) = 0$. Thus f(X) is divisible by both X - z and $X - \overline{z}$, so it is divisible by p_z . Thus the kernel is exactly all multiples of p_z ; $\ker \phi_z = (p_z)$. \Box

c) Show that $\mathbb{R}[X]/(p_z)$ is isomorphic to \mathbb{R} if $z \in \mathbb{R}$ and to \mathbb{C} otherwise.

Proof. By isomorphism theorem and part b, the quotient is equal to the image of ϕ_z . Clearly, the image contains \mathbb{R} , since $\phi_z(\mathbb{R}) = \mathbb{R}$. If $z \in \mathbb{R}$, then $\phi_z(X) \in \mathbb{R}$, and thus any element of $\mathbb{R}[X]$ is mapped into \mathbb{R} . Then the image is just \mathbb{R} . Otherwise, $\phi_z(X)$ is nonreal. If z = a + bi, then $\phi_z((X - a)/b) = i$, so the image contains i and therefore every complex number, so the image is \mathbb{C} .

2 Problem 3

a) Show that (x, y) is a maximal ideal in $\mathbb{Q}[x, y]$ and that it is not principal.

Proof. The quotient $\mathbb{Q}[x, y]/(x, y) \cong \mathbb{Q}$, which is a field, so (x, y) is maximal. It cannot be principal, since the ideal contains x and y, which are independent variables and cannot be expressed as multiples of some other element in (x, y).

b) Show that (x, y) is a prime ideal in $\mathbb{Z}[x, y]$ which is not maximal. Find a maximal ideal containing (x, y).

Proof. The quotient $\mathbb{Z}[x,y]/(x,y) \cong \mathbb{Z}$ is an integral domain but not a field, so (x,y) is prime but not maximal. Now consider the ideal (x,y,2). Then the quotient $\mathbb{Z}[x,y]/(x,y,2) \cong \mathbb{Z}/2\mathbb{Z}$, which is a field, so (x,y,2) is a maximal ideal. It contains (x,y) since it is (x,y) with an extra generator.

3 Problem 8.3.6

a) Prove that the quotient ring $\mathbb{Z}[i]/(1+i)$ is a field of order 2.

Proof. In $\mathbb{Z}[i]$, the only relation is $i^2 = -1$. Taking the quotient by (1+i) adds the relation i = -1. Squaring both sides gives -1 = 1, so 2 = 0. Thus $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}/2\mathbb{Z}$.

b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. Prove that the quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.

Proof. The quotient only has q^2 distinct elements, which are the equivalence classes of a+bi for a = 0, 1, ..., q-1 and b = 0, 1, ..., q-1, with equivalence given by congruence mod q. Consider the standard method for computing inverses of complex numbers, i.e. by multiplying by the conjugate: $(a + bi)^{-1} = (a^2 + b^2)^{-1}(a - bi)$. Suppose $a + bi \neq 0$. Then $a \neq 0$ or $b \neq 0$. If either is congruent to 0, then the other will be not congruent to 0 and will square to not zero, since q is prime. (In other words, $x^2 \equiv 0 \mod prime \operatorname{implies} x \equiv 0$). Thus, assume both $a, b \neq 0$. But then ab^{-1} is an order 4 element in $(\mathbb{Z}/q\mathbb{Z})^*$, which has order $q - 1 \equiv 2 \mod 4$. This is a contradiction. Thus if $a + bi \neq 0$, $a^2 + b^2 \neq 0$. Then we can compute $(a^2 + b^2)^{-1}(a - bi) \mod q$, so that every nonzero element has an inverse.

c) Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \mod 4$ and write $p = \pi \overline{\pi}$ as in Proposition 18. Show that the hypotheses for the Chinese Remainder Theorem are satisfied and that $\mathbb{Z}[i]/(p) \cong \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\overline{\pi})$ as rings. Show that the quotient $\mathbb{Z}[i]/(p)$ has order p^2 and conclude that $\mathbb{Z}[i]/(\pi)$ and $\mathbb{Z}[i]/(\overline{\pi})$ are both fields of order p.

Proof. First we show that $(\pi) + (\overline{\pi}) = \mathbb{Z}[i]$. Observe that for $\pi = a + bi$, a, b must be coprime. Indeed, since $a^2 + b^2 = p$ is prime, the square of gcd(a, b) divides p, implying the gcd is 1. Thus for integers x, y, we can find integers x_1, x_2, y_1, y_2 such that $ax_1 + bx_2 = x$ and $ay_1 + by_2 = y$. Now, a, b cannot have the same parity, as then $a^2 + b^2$ would be even. Thus one is even, one is odd. WLOG, let a be even and b odd. We then modify x_i, y_i such that $x_1 \equiv y_2 \mod 2$, and $x_2 \equiv y_1$. The modification is given by adding ab - ba = 0 to either equation, which has the effect of changing the parity of the first variable, and keeping the parity of the second. Thus we can assume $x_1 \equiv y_2 \mod 2$, and $x_2 \equiv y_1$. With this in mind, let $c = (x_1 + y_2)/2$, $e = (x_1 - y_2)/2$, $d = (y_1 - x_2)/2$, and $f = (y_1 + x_2)/2$; they are all integers. The merit of all of this work is that (c + di)(a + bi) + (e + fi)(a - bi) = x + yi, as can be checked by computation. The left hand side is an element of $(\pi) + (\overline{\pi})$, while the right hand side is an arbitrary element of $\mathbb{Z}[i]$, so we have $(\pi) + (\overline{\pi}) = \mathbb{Z}[i]$.

Next, we show that $(\pi)(\overline{\pi}) = (p)$. Elements of the left hand side are sums of terms of the form $\pi x \overline{\pi} y = p x y$, so that $(\pi)(\overline{\pi}) \subset (p)$. On the other hand, obviously $p = \pi \overline{\pi} \in (\pi)(\overline{\pi})$, so $(p) \subset (\pi)(\overline{\pi})$. Thus we have the conditions for CRT, so that $\mathbb{Z}[i]/(p) \cong \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\overline{\pi})$. As in part $b, \mathbb{Z}[i]/(p)$ has p^2 distinct elements, namely the equivalence classes of x + yi for $x, y = 0, ..., p - 1 \mod p$. Since the order of (finite) rings is multiplicative, we have that the order of $\mathbb{Z}[i]/(\pi)$ is either 1, p, or p^2 . The order is 1 iff $(\pi) = \mathbb{Z}[i]$. This is clearly not the case by considering the norm $N(x + yi) = x^2 + y^2$ on $\mathbb{Z}[i]$. It is multiplicative, so that if π divides an element $x, N(\pi)$ divides N(x). We have $N(\pi) = a^2 + b^2 = p$, while N(1) = 1, so clearly $(\pi) \neq \mathbb{Z}[i]$. Similarly, $(\overline{\pi}) \neq \mathbb{Z}[i]$, which excludes the order of either quotient ring being p^2 . Thus both have order p.

4 Problem 8.3.8

Let $R = \mathbb{Z}[\sqrt{-5}]$ and let $I_2 = (2, 1 + \sqrt{-5}), I_3 = (3, 2 + \sqrt{-5}), I'_3 = (3, 2 - \sqrt{-5}).$

a) Prove that $2, 3, 1 + \sqrt{-5}$, and $1 - \sqrt{-5}$ are irreducibles in R, no two of which are associate in R, and that $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in R.

Proof. We use the norm $N(a + b\sqrt{-5}) = a^2 + 5b^2$. The norm is multiplicative, i.e. N(xy) = N(x)N(y). Thus we can check irreducibility by looking at factorizations of the norm. Note that $N(a + b\sqrt{-5}) = 1$ iff $a + b\sqrt{-5} = \pm 1$, since $b \neq 0$ implies $N(a + b\sqrt{-5}) \geq 5$, so we must have $a^2 = 1$ and b = 0. Thus, elements with norm 1 are units in R. Conversely, ± 1 are the only units in R. To show this, suppose $(a + b\sqrt{-5})(c + d\sqrt{-5}) = 1$. Taking norms gives $N(a + b\sqrt{-5})N(c + d\sqrt{-5}) = 1$, so $N(a + b\sqrt{-5}) = 1$. Thus N(x) = 1 iff x is a unit.

Now, suppose 2 = xy with x, y not units. N(2) = 4 = N(x)N(y) implies N(x) = 2. This is impossible; if $x = a + b\sqrt{-5}$, N(x) < 5 implies b = 0, and then $a^2 = 2$ is not solvable in \mathbb{Z} . Similar logic works for the other elements. If 3 = xy with x, y not units, then N(3) = 9 = N(x)N(y) implies N(x) = 3, which implies $x = a \in \mathbb{Z}$ with $a^2 = 3$, again impossible. If $1 \pm \sqrt{-5} = xy$ with x, y non units, $N(1 \pm \sqrt{-5}) = 6 = N(x)N(y)$ implies N(x) = 2 or 3, both of which have been seen to be impossible.

Since the only units in R are ± 1 , x, y are associates iff $y = \pm x$. Thus it is obvious that none of $2, 3, 1 + \sqrt{-5}$, and $1 - \sqrt{-5}$ are associates. Since none of these elements are units nor associates of each other, $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ give unique factorizations of 6.

b) Prove that I_2, I_3 , and I'_3 are prime ideals in R.

Proof. Write $\alpha = \sqrt{-5}$. The only relation in R is $\alpha^2 = -5$. Taking a quotient by I_2 gives extra relations 2 = 0 and $\alpha = -1$. Squaring the second equation gives -5 = 1, which is 6 = 0, which is also implied by 2 = 0, so there is no extra information. Thus we just get $R/(1+i) \cong \mathbb{Z}/2\mathbb{Z}$, which is an integral domain, so I_2 is prime.

Taking a quotient by I_3 gives extra relations 3 = 0 and $\alpha = -2$. Squaring the latter gives -5 = 4 or 9 = 0, which is implied by 3 = 0. Thus $R/I_3 \cong \mathbb{Z}/3\mathbb{Z}$, which is an integral domain, so I_3 is prime.

Taking a quotient by I'_3 gives extra relations 3 = 0 and $\alpha = 2$. Squaring the latter gives -5 = 4 or 9 = 0, which is implied by 3 = 0. Thus $R/I_3 \cong \mathbb{Z}/3\mathbb{Z}$, which is an integral domain, so I_3 is prime.

c) Show that the factorizations in part a imply the equality of ideals (6) = (2)(3) and (6) = $(1 + \sqrt{-5})(1 - \sqrt{-5})$. Show that these two ideal factorizations give the same factorization of the ideal (6) as the product of prime ideals.

Proof. An element of (2) is of the form 2x, and an element of (3) is of the form 3y. Thus elements in (2)(3) are of the form $2x_13y_1 + ... 2x_n3y_n = 6(x_1y_1 + ...x_ny_n) \in$ (6). Thus (2)(3) \subset (6) Since $6 = 2 \cdot 3 \in$ (2)(3), we have (6) \subset (2)(3). Thus (6) = (2)(3). Similar logic follows for $1 \pm \sqrt{-5}$, since $(1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}) = 6$ in R, so as ideals we have (6) = $(1 + \sqrt{-5})(1 - \sqrt{-5})$.

We now decompose each of the principal ideals into their prime factors. I_2^2 has terms that are sums of terms $(2a + b(1 + \sqrt{-5})(2c + d(1 + \sqrt{-5})) = 2(2ac + ad + bc - 2bd + (ad + bd + bc)\sqrt{-5}) \in (2)$, so we have $I_2^2 \subset (2)$. On the other hand, $2 = (1 + \sqrt{-5})(2 - (1 + \sqrt{-5})) + (-2)(2) \in I_2^2$, so $(2) \subset I_2^2$. Thus $I_2^2 = (2)$. A similar argument shows that $I_3I_3' = (3)$, since $(3a + 2b + b\sqrt{-5})(3c + 2d - d\sqrt{-5}) = 3(3ac + 2ad + 2bc + 3bd + (bc - ad)\sqrt{-5}) \in (3)$ and $3 \in I_3I_3'$. Thus we have $(6) = (2)(3) = I_2^2I_3I_3'$.

We do similar computations for the other ideals. I_2I_3 is generated by sums of terms of the form $(2a+b+b\sqrt{-5})(3c+2d+d\sqrt{-5}) = [(ac+ad+bc)(1+\sqrt{-5})-2ad-3bc-3bd](1-\sqrt{-5}) \in (1-\sqrt{-5})$. Again, we also have $1-\sqrt{-5} \in I_2I_3$ (Sorry grader I am too lazy to actually show this), so $(1+\sqrt{-5}) = I_2I_3$. For $I_2I'_3$ we have $(2a+b+b\sqrt{-5})(3c+2d-d\sqrt{-5}) = [(ac+ad+bd)(1-\sqrt{-5}-2ad+bd+3bc)](1+\sqrt{-5}) \in (1+\sqrt{-5})$. Again, $1+\sqrt{-5} \in I_2I'_3$, so $I_2I'_3 = (1+\sqrt{-5})$. Thus (6) = $(1+\sqrt{-5})(1-\sqrt{-5}) = I_2^2I_3I'_3$. Thus, the two factorizations of (6) give the same prime factorization.

5 Problem 9.6.7

Order the monomials $x^2z, x^2y^2z, xy^2z, x^3y, x^3z^2, x^2, x^2yz^2, x^2z^2$ for the lexicographic ordering x > y > z, for the corresponding grlex order, and for the grevlex ordering.

Proof. Lexicographic: $x^3y, x^3z^2, x^2y^2z, x^2yz^2, x^2z^2, x^2z, x^2, xy^2z$.

Grlex: $x^3z^2, x^2y^2z, x^2yz^2, x^3y, x^2z^2, xy^2z, x^2z$.

Grevlex: $x^2y^2z, x^3z^2, x^2yz^2, x^3y, xy^2z, x^2z^2, x^2z$.