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1 Problem 2

Let z ∈ C.

a) Show that there is a unique irreducible monic polynomial pz ∈ R[X] of
degree ≤ 2 such that pz(z) = 0.

Proof. Let z = a + bi. Suppose b ̸= 0. Consider pz(X) = (X − (a + bi))(X −
(a − bi)) = X2 − 2aX + a2 + b2. Since the roots are both non-real and the
polynomial is degree 2, there is no way to factor over R, since that would imply
pz has real roots. By construction, pz(z) = 0.

If b = 0, so that z = a ∈ R, then pz(X) = X − a is clearly satisfies the
required conditions.

b) Let ϕz : R[X] → C be the unique homomorphism extending R ↪→ C with
ϕz(X) = z. Show that kerϕz = (pz).

Proof. Note that a polynomial f(X) = a0 + a1X + ... + anX
n is mapped to

ϕz(f(X)) = a0 + a1z + ... + anz
n = f(z). Thus f ∈ kerϕz iff f(z) = 0. Then

any multiple of pz is in kerϕz, since ϕz(z)g(z) = 0 for any g ∈ R[X]. If f(z) = 0,
then f(z) = f(z) = 0. Thus f(X) is divisible by both X − z and X − z, so it is
divisible by pz. Thus the kernel is exactly all multiples of pz; kerϕz = (pz).

c) Show that R[X]/(pz) is isomorphic to R if z ∈ R and to C otherwise.

Proof. By isomorphism theorem and part b, the quotient is equal to the image of
ϕz. Clearly, the image contains R, since ϕz(R) = R. If z ∈ R, then ϕz(X) ∈ R,
and thus any element of R[X] is mapped into R. Then the image is just R.
Otherwise, ϕz(X) is nonreal. If z = a+bi, then ϕz((X−a)/b) = i, so the image
contains i and therefore every complex number, so the image is C.
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2 Problem 3

a) Show that (x, y) is a maximal ideal in Q[x, y] and that it is not principal.

Proof. The quotient Q[x, y]/(x, y) ∼= Q, which is a field, so (x, y) is maximal.
It cannot be principal, since the ideal contains x and y, which are independent
variables and cannot be expressed as multiples of some other element in (x, y).

b) Show that (x, y) is a prime ideal in Z[x, y] which is not maximal. Find a
maximal ideal containing (x, y).

Proof. The quotient Z[x, y]/(x, y) ∼= Z is an integral domain but not a field,
so (x, y) is prime but not maximal. Now consider the ideal (x, y, 2). Then the
quotient Z[x, y]/(x, y, 2) ∼= Z/2Z, which is a field, so (x, y, 2) is a maximal ideal.
It contains (x, y) since it is (x, y) with an extra generator.
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3 Problem 8.3.6

a) Prove that the quotient ring Z[i]/(1 + i) is a field of order 2.

Proof. In Z[i], the only relation is i2 = −1. Taking the quotient by (1 + i)
adds the relation i = −1. Squaring both sides gives −1 = 1, so 2 = 0. Thus
Z[i]/(1 + i) ∼= Z/2Z.

b) Let q ∈ Z be a prime with q ≡ 3 mod 4. Prove that the quotient ring
Z[i]/(q) is a field with q2 elements.

Proof. The quotient only has q2 distinct elements, which are the equivalence
classes of a+bi for a = 0, 1, ..., q−1 and b = 0, 1, ..., q−1, with equivalence given
by congruence mod q. Consider the standard method for computing inverses
of complex numbers, i.e. by multiplying by the conjugate: (a + bi)−1 = (a2 +
b2)−1(a− bi). Suppose a+ bi ̸≡ 0. Then a ̸≡ 0 or b ̸≡ 0. If either is congruent
to 0, then the other will be not congruent to 0 and will square to not zero, since
q is prime. (In other words, x2 ≡ 0 mod prime implies x ≡ 0). Thus, assume
both a, b ̸≡ 0. a2 + b2 ≡ 0 then implies (ab−1)2 ≡ −1, where b−1 exists mod q
since b ̸≡ 0. But then ab−1 is an order 4 element in (Z/qZ)∗, which has order
q− 1 ≡ 2 mod 4. This is a contradiction. Thus if a+ bi ̸≡ 0, a2 + b2 ̸≡ 0. Then
we can compute (a2 + b2)−1(a − bi) mod q, so that every nonzero element has
an inverse.

c) Let p ∈ Z be a prime with p ≡ 1 mod 4 and write p = ππ as in Proposition
18. Show that the hypotheses for the Chinese Remainder Theorem are satisfied
and that Z[i]/(p) ∼= Z[i]/(π)×Z[i]/(π) as rings. Show that the quotient Z[i]/(p)
has order p2 and conclude that Z[i]/(π) and Z[i]/(π) are both fields of order p.

Proof. First we show that (π)+(π) = Z[i]. Observe that for π = a+bi, a, b must
be coprime. Indeed, since a2+ b2 = p is prime, the square of gcd(a, b) divides p,
implying the gcd is 1. Thus for integers x, y, we can find integers x1, x2, y1, y2
such that ax1 + bx2 = x and ay1 + by2 = y. Now, a, b cannot have the same
parity, as then a2 + b2 would be even. Thus one is even, one is odd. WLOG,
let a be even and b odd. We then modify xi, yi such that x1 ≡ y2 mod 2, and
x2 ≡ y1. The modification is given by adding ab − ba = 0 to either equation,
which has the effect of changing the parity of the first variable, and keeping
the parity of the second. Thus we can assume x1 ≡ y2 mod 2, and x2 ≡ y1.
With this in mind, let c = (x1 + y2)/2, e = (x1 − y2)/2, d = (y1 − x2)/2, and
f = (y1 + x2)/2; they are all integers. The merit of all of this work is that
(c+ di)(a+ bi) + (e+ fi)(a− bi) = x+ yi, as can be checked by computation.
The left hand side is an element of (π) + (π), while the right hand side is an
arbitrary element of Z[i], so we have (π) + (π) = Z[i].

Next, we show that (π)(π) = (p). Elements of the left hand side are sums
of terms of the form πxπy = pxy, so that (π)(π) ⊂ (p). On the other hand,
obviously p = ππ ∈ (π)(π), so (p) ⊂ (π)(π). Thus we have the conditions for
CRT, so that Z[i]/(p) ∼= Z[i]/(π)× Z[i]/(π).
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As in part b, Z[i]/(p) has p2 distinct elements, namely the equivalence classes
of x + yi for x, y = 0, ..., p − 1 mod p. Since the order of (finite) rings is
multiplicative, we have that the order of Z[i]/(π) is either 1, p, or p2. The
order is 1 iff (π) = Z[i]. This is clearly not the case by considering the norm
N(x+ yi) = x2 + y2 on Z[i]. It is multiplicative, so that if π divides an element
x, N(π) divides N(x). We have N(π) = a2 + b2 = p, while N(1) = 1, so clearly
(π) ̸= Z[i]. Similarly, (π) ̸= Z[i], which excludes the order of either quotient
ring being p2. Thus both have order p.
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4 Problem 8.3.8

Let R = Z[
√
−5] and let I2 = (2, 1+

√
−5), I3 = (3, 2+

√
−5), I ′3 = (3, 2−

√
−5).

a) Prove that 2, 3, 1 +
√
−5, and 1 −

√
−5 are irreducibles in R, no two of

which are associate in R, and that 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) are two

distinct factorizations of 6 into irreducibles in R.

Proof. We use the norm N(a + b
√
−5) = a2 + 5b2. The norm is multiplica-

tive, i.e. N(xy) = N(x)N(y). Thus we can check irreducibility by looking at
factorizations of the norm. Note that N(a + b

√
−5) = 1 iff a + b

√
−5 = ±1,

since b ̸= 0 implies N(a + b
√
−5) ≥ 5, so we must have a2 = 1 and b = 0.

Thus, elements with norm 1 are units in R. Conversely, ±1 are the only units
in R. To show this, suppose (a + b

√
−5)(c + d

√
−5) = 1. Taking norms gives

N(a+ b
√
−5)N(c+ d

√
−5) = 1, so N(a+ b

√
−5) = 1. Thus N(x) = 1 iff x is a

unit.
Now, suppose 2 = xy with x, y not units. N(2) = 4 = N(x)N(y) implies

N(x) = 2. This is impossible; if x = a + b
√
−5, N(x) < 5 implies b = 0, and

then a2 = 2 is not solvable in Z. Similar logic works for the other elements.
If 3 = xy with x, y not units, then N(3) = 9 = N(x)N(y) implies N(x) = 3,
which implies x = a ∈ Z with a2 = 3, again impossible. If 1±

√
−5 = xy with

x, y non units, N(1 ±
√
−5) = 6 = N(x)N(y) implies N(x) = 2 or 3, both of

which have been seen to be impossible.
Since the only units in R are ±1, x, y are associates iff y = ±x. Thus it is

obvious that none of 2, 3, 1 +
√
−5, and 1 −

√
−5 are associates. Since none of

these elements are units nor associates of each other, 2 ·3 = (1+
√
−5)(1−

√
−5)

give unique factorizations of 6.

b) Prove that I2, I3, and I ′3 are prime ideals in R.

Proof. Write α =
√
−5. The only relation in R is α2 = −5. Taking a quotient

by I2 gives extra relations 2 = 0 and α = −1. Squaring the second equation
gives −5 = 1, which is 6 = 0, which is also implied by 2 = 0, so there is no extra
information. Thus we just get R/(1 + i) ∼= Z/2Z, which is an integral domain,
so I2 is prime.

Taking a quotient by I3 gives extra relations 3 = 0 and α = −2. Squaring
the latter gives −5 = 4 or 9 = 0, which is implied by 3 = 0. Thus R/I3 ∼= Z/3Z,
which is an integral domain, so I3 is prime.

Taking a quotient by I ′3 gives extra relations 3 = 0 and α = 2. Squaring the
latter gives −5 = 4 or 9 = 0, which is implied by 3 = 0. Thus R/I3 ∼= Z/3Z,
which is an integral domain, so I3 is prime.

c) Show that the factorizations in part a imply the equality of ideals (6) =
(2)(3) and (6) = (1+

√
−5)(1−

√
−5). Show that these two ideal factorizations

give the same factorization of the ideal (6) as the product of prime ideals.
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Proof. An element of (2) is of the form 2x, and an element of (3) is of the form 3y.
Thus elements in (2)(3) are of the form 2x13y1+ ...2xn3yn = 6(x1y1+ ...xnyn) ∈
(6). Thus (2)(3) ⊂ (6) Since 6 = 2 · 3 ∈ (2)(3), we have (6) ⊂ (2)(3). Thus
(6) = (2)(3). Similar logic follows for 1±

√
−5, since (1+

√
−5) · (1−

√
−5) = 6

in R, so as ideals we have (6) = (1 +
√
−5)(1−

√
−5).

We now decompose each of the principal ideals into their prime factors.
I22 has terms that are sums of terms (2a + b(1 +

√
−5)(2c + d(1 +

√
−5)) =

2(2ac + ad + bc − 2bd + (ad + bd + bc)
√
−5) ∈ (2), so we have I22 ⊂ (2). On

the other hand, 2 = (1 +
√
−5)(2 − (1 +

√
−5)) + (−2)(2) ∈ I22 , so (2) ⊂ I22 .

Thus I22 = (2). A similar argument shows that I3I
′
3 = (3), since (3a + 2b +

b
√
−5)(3c+ 2d− d

√
−5) = 3(3ac+ 2ad+ 2bc+ 3bd+ (bc− ad)

√
−5) ∈ (3) and

3 ∈ I3I
′
3. Thus we have (6) = (2)(3) = I22I3I

′
3.

We do similar computations for the other ideals. I2I3 is generated by sums
of terms of the form (2a+b+b

√
−5)(3c+2d+d

√
−5) = [(ac+ad+bc)(1+

√
−5)−

2ad − 3bc − 3bd](1 −
√
−5) ∈ (1 −

√
−5). Again, we also have 1 −

√
−5 ∈ I2I3

(Sorry grader I am too lazy to actually show this), so (1 +
√
−5) = I2I3. For

I2I
′
3 we have (2a+b+b

√
−5)(3c+2d−d

√
−5) = [(ac+ad+bd)(1−

√
−5−2ad+

bd+3bc)](1+
√
−5) ∈ (1+

√
−5). Again, 1+

√
−5 ∈ I2I

′
3, so I2I

′
3 = (1+

√
−5).

Thus (6) = (1 +
√
−5)(1−

√
−5) = I22I3I

′
3. Thus, the two factorizations of (6)

give the same prime factorization.
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5 Problem 9.6.7

Order the monomials x2z, x2y2z, xy2z, x3y, x3z2, x2, x2yz2, x2z2 for the lexico-
graphic ordering x > y > z, for the corresponding grlex order, and for the
grevlex ordering.

Proof. Lexicographic: x3y, x3z2, x2y2z, x2yz2, x2z2, x2z, x2, xy2z.

Grlex: x3z2, x2y2z, x2yz2, x3y, x2z2, xy2z, x2z.

Grevlex: x2y2z, x3z2, x2yz2, x3y, xy2z, x2z2, x2z.
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