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1 Problem 1

a) Let R be a PID. Show that R is unital.

Proof. Since R is trivially an ideal, we have that R = (a) for some nonzero
a € R. Thus any element € R can be expressed as ab = r for some b € R. In
particular, there is some ¢ € R such that ac = a. Then rc¢ = abc =acb=ab=1r
for all 7 € R, so c is a multiplicative identity. O

b) Exhibit a non-principal ideal in 27Z.

Proof. The whole ring itself is not a principal ideal. A principal ideal (a) in 2Z
has the form {..., —4a, —2a,0,2a,4a,...}. Since a € 2Z, all the elements of (a)
will then be strictly contained in 47, so it cannot be equal to all of 27Z. O

¢) Show that the division algorithm fails in 27Z.

Proof. Consider a = 6,b = 4. Then there is no ¢ € 2Z such that 6 = 4q + r for
0 < r < 4. This is because ¢ = 0 gives r = 6 and ¢ = 2 gives r = —2. Higher
values of ¢ will result in lower values of 7, and lower values of ¢ will result in
higher values of 7, so 7 > 6 or » < —2. Thus, the division algorithm fails. O



2 Problem 2

Let F be a field and v a discrete valuation on F.

a) Show that D = {x € F | v(z) > 0} is a sub-integral domain of F
containing 1 and that M = {z € F | v(z) > 0} is the unique maximal ideal of
D.

Proof. Notice that v(1) = v(1) + v(1), using the multiplicative property of v.
Then v(1) = 0, so 1 € D. Since v(0) = 00, 0 € D. For z,y € D, v(zy) =
v(z)4+v(y) 204+0=0,s0 2y € D. v(z+y) > min(v(z),v(y)) > min(0,0) = 0,
so x +y € D. Thus D is a subring of F'. Since F' is an integral domain, D is as
well.

That M is an ideal follows from the defining inequality and the definition
of v. In particular, v(x + y) > min(v(z),v(y)) > min(0,0) = 0 for z,y € M,
and v(xy) = v(z) + v(y) > v(z) > 0 for x € D,y € M. Consider D — M =
{x€F|v()—O} va()—O, then z # 0, so 0 = v(1) = v(zz™?t) =
v(z)+v(z™!) =v(z™t). Then 2=t € D, so D— M C D*. Similarly, if z € D*,
then 0 = v(z) + v(z~1) > v(z) > 0 implies that v(z) = 0. Thus D — M = D*,
implying that M is the unique maximal ideal of D. O

b) Suppose a,b € D and b # 0. Show that b|a iff v(a) > v(b). Conclude that
v makes D into a Euclidean ring.

Proof. Suppose a = be for ¢ € D. Then v(a) = v(be) = v(b) + v(c) > v(b).
If v(a) > v(b), then v(ab™!) = v(a) —v(b) > 0, so ab™! € D. If v(a) < v(b),
then @ = 0b + a. Thus D has a division algorithm given by v. For a,b # 0,

v(ab) = v(a) + v(b) > v(a). Thus v is a Euclidean function on D. O

c¢) Let m € D satisfy v(m) = 1. Show that 7 is irreducible and that if a € F'
is nonzero, then a can be expressed uniquely as un?(®, with u € D*. Conclude
that F' is the quotient field of D.

Proof. Suppose m = ab for a,b € D. Then 1 = v(w) = v(a) + v(b). Since
v(a),v(b) are non-negative integers, the only possibility is that one of v(a) or
v(b) is equal to 0, in which case one of a or b is a unit. Thus 7 is irreducible.
If v(a) > 0, then v(7*(®) = v(7) 4+ ... + v(7) = 1 + ... + 1 = v(a), where
each sum has v(a) terms. If v(a) < 0, we see that 0 = v(1) = v(r¥(@ g (@) =
v(7 (@) —v(a), so v(r?( D) = v(a). If v(a) =0, then 1 = 7 50 v(a) = 0 =
v(7¥(@)). Thus in any case, v(a) = v(7*®). Then v(ar~"(®) = 0, implying
an~v(®) ¢ DX, O

d) Show that the nonzero ideals of D are (7™) = {x € F | v(z) > m} and
that these are all distinct.

Proof. Let I be a nonzero ideal of D. Consider v(I) = {v(z) : ¢ € I} C
N U {0}. By the well-ordering principle of the natural numbers, v(I) has a
smallest element m. It follows that I C {z € F' | v(x) > m}. There is x € I



such that v(x) = m. For some u € D*, z = ur™, so 7™ = u~ 'z € I. Then
(m™) C I.

We now show that (7™) = {z € F | v(x m}, from which it will follow
that I = (7#™) by the inclusions (7™) C I C {x € F | v(z) > m}. We have
(™) C {z € F | v(z) > m}, so let v(x) > m. Since v(7™) = m < v(x),
we have from part b that 7|z, so © = yn™ € (a™) for some y € D. Thus
(7™) ={x € F | v(xz) > m} as desired.

That these ideals are distinct follows from the inequality in {z € F | v(z) >
m}; if {x € F|v(z) >m}={z e F|v(z)>n} for m#n, say m < n without
loss of generality, then there is an element x = 7™ € {x € F | v(z) > m} with
v(xz) =m < n, so v(zr) #n.

>
{



3 Problem 3

Show that each ring below is a DVR by defining an appropriate discrete valua-
tion on its quotient field. Give explicit descriptions of the units and ideals.

a) F[[X]] where F' is a field.

Proof. From previous homework, the fraction field is F'((X)). Define v(a, X"+
...) = n, the degree of the lowest non-zero monomial. Since (a, X" +...) (b, X™+
w) = Apbp X" + L we see v(zy) = v(z) + v(y). Since (@, X™ + ...) +
(b X™ +...) = ap X" + ... for n < m, we see v(x +y) > min(v(z),v(y)), where
the inequality comes from the possibility of terms cancelling when n = m and
an = —by,. Since the least degree term for elements of F[[X]] has degree at
least 0, we see that F[[X]] is a DVR. O

b) Zy = {% € Q| p{ b} where p is a fixed prime number.

Proof. Note that Z C Z,) C Q, so the fraction field is Q. Let v(n) be the highest
power of p dividing an integer n. Then extend v to Q by v(%) = v(a) — v(b).
Then v is a valuation on Q since it is a valuation on Z. For § € Z(,), since
v(b) =0, v(}) =v(a) >0, so Z, is a DVR.



4 Problem 4

Let p be an odd prime.

a) Show that exactly half of the integers 1,...,p — 1 are quadratic residues
mod p.

Proof. Consider the map z ++ x2 on (Z/pZ)*. By definition, the image are the
nonzero (mod p) quadratic residues. The kernel consists of = such that 22 = 1.
Then p|(z—1)(x+1), so p|(x—1) or p|(z+1). Thus the kernel has two elements,
1 and p — 1. By an isomorphism theorem, the image of quadratic residues has
size (p — 1)/2. O

b) Let m be a positive integer which is not a perfect square. Consider the
subring S, = {a +by/m | a,b € Z} of R. Show that I, = {a + by/m | p|a, b} is
an ideal of S,,.

Proof. Let pa + pby/m, pc+ pdy/m € I,. Then (pa + pby/m) + (pc + pdy/m) =
pla+c)+pb+d)y/m € I,. For any c+dy/m € Sy, (pa+ pby/m)(c+ dym) =
p(ac + bdm) + p(ad + be)/m € I,. Thus I, is an ideal of S,,. O

¢) If m is a quadratic nonresidue mod p, show that I, is a maximal ideal of
Sm and that Sy, /I, is a field having p? elements.

Proof. Let J be an ideal strictly containing I,,, and let x +y/m € J —I,. Then
(x —yy/m)(x +yy/m) = 2> —my? € J. If pt (22 —my?), then by the Euclidean
algorithm, p € J implies 1 € J, so J = S,,,. Now suppose p|(z? — my?). Since
z+yym ¢ I, ptxzorpty If pfy, then y has an inverse z mod p. Then

2?2 = my? implies (z2)? = m, which is a contradiction. Thus p { = and p|y.
Since ply, yv/m € J, so x € J also. Since ptx and p € J, ged(z, p) = 1 implies
leJ,soJ =5, O



5 Problem 7.6.3

Let R, S be unital rings. Prove that every ideal of R x S is of the form I x J
where [ is an ideal of R and J is an ideal of S.

Proof. Let w1 : Rx S — R be the projection 71 (r,s) = r, and let 7o : Rx S — S
be the projection mo(r,s) = s. m, Ty are surjective ring homomorphisms. Let
K be an ideal of R x S, and let I = m(K),J = m2(K). Since the image of an
ideal in a surjective ring homomorphism is an ideal, I is an ideal of R and J is
an ideal of S.

If (a,b) € K, then a = m1(a,b) € I and b = ma(a,b) € J, so (a,b) € I x J.
Thus K C I x J. If (a,b) € I x J, then (a,s) € K for some s € S and (r,b) € K
for some r € R. Then (1,0)(a, s) = (a,0) € K and (0,1)(r,b) = (0,b) € K, so
(a,0) + (0,b) = (a,b) € K. Thus K =1 x J. O



