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1 Problem 1

a) Let R be a PID. Show that R is unital.

Proof. Since R is trivially an ideal, we have that R = (a) for some nonzero
a ∈ R. Thus any element r ∈ R can be expressed as ab = r for some b ∈ R. In
particular, there is some c ∈ R such that ac = a. Then rc = abc = acb = ab = r
for all r ∈ R, so c is a multiplicative identity.

b) Exhibit a non-principal ideal in 2Z.

Proof. The whole ring itself is not a principal ideal. A principal ideal (a) in 2Z
has the form {...,−4a,−2a, 0, 2a, 4a, ...}. Since a ∈ 2Z, all the elements of (a)
will then be strictly contained in 4Z, so it cannot be equal to all of 2Z.

c) Show that the division algorithm fails in 2Z.

Proof. Consider a = 6, b = 4. Then there is no q ∈ 2Z such that 6 = 4q + r for
0 ≤ r < 4. This is because q = 0 gives r = 6 and q = 2 gives r = −2. Higher
values of q will result in lower values of r, and lower values of q will result in
higher values of r, so r ≥ 6 or r ≤ −2. Thus, the division algorithm fails.
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2 Problem 2

Let F be a field and v a discrete valuation on F .

a) Show that D = {x ∈ F | v(x) ≥ 0} is a sub-integral domain of F
containing 1 and that M = {x ∈ F | v(x) > 0} is the unique maximal ideal of
D.

Proof. Notice that v(1) = v(1) + v(1), using the multiplicative property of v.
Then v(1) = 0, so 1 ∈ D. Since v(0) = ∞, 0 ∈ D. For x, y ∈ D, v(xy) =
v(x)+ v(y) ≥ 0+0 = 0, so xy ∈ D. v(x+ y) ≥ min(v(x), v(y)) ≥ min(0, 0) = 0,
so x+ y ∈ D. Thus D is a subring of F . Since F is an integral domain, D is as
well.

That M is an ideal follows from the defining inequality and the definition
of v. In particular, v(x + y) ≥ min(v(x), v(y)) > min(0, 0) = 0 for x, y ∈ M ,
and v(xy) = v(x) + v(y) > v(x) ≥ 0 for x ∈ D, y ∈ M . Consider D − M =
{x ∈ F | v(x) = 0}. If v(x) = 0, then x ̸= 0, so 0 = v(1) = v(xx−1) =
v(x)+ v(x−1) = v(x−1). Then x−1 ∈ D, so D−M ⊂ D×. Similarly, if x ∈ D×,
then 0 = v(x) + v(x−1) ≥ v(x) ≥ 0 implies that v(x) = 0. Thus D −M = D×,
implying that M is the unique maximal ideal of D.

b) Suppose a, b ∈ D and b ̸= 0. Show that b|a iff v(a) ≥ v(b). Conclude that
v makes D into a Euclidean ring.

Proof. Suppose a = bc for c ∈ D. Then v(a) = v(bc) = v(b) + v(c) ≥ v(b).
If v(a) ≥ v(b), then v(ab−1) = v(a) − v(b) ≥ 0, so ab−1 ∈ D. If v(a) < v(b),
then a = 0b + a. Thus D has a division algorithm given by v. For a, b ̸= 0,
v(ab) = v(a) + v(b) ≥ v(a). Thus v is a Euclidean function on D.

c) Let π ∈ D satisfy v(π) = 1. Show that π is irreducible and that if a ∈ F
is nonzero, then a can be expressed uniquely as uπv(a), with u ∈ D×. Conclude
that F is the quotient field of D.

Proof. Suppose π = ab for a, b ∈ D. Then 1 = v(π) = v(a) + v(b). Since
v(a), v(b) are non-negative integers, the only possibility is that one of v(a) or
v(b) is equal to 0, in which case one of a or b is a unit. Thus π is irreducible.

If v(a) > 0, then v(πv(a)) = v(π) + ... + v(π) = 1 + ... + 1 = v(a), where
each sum has v(a) terms. If v(a) < 0, we see that 0 = v(1) = v(πv(a)π−v(a)) =
v(πv(a)) − v(a), so v(πv(a)) = v(a). If v(a) = 0, then 1 = πv(a), so v(a) = 0 =
v(πv(a)). Thus in any case, v(a) = v(πv(a)). Then v(aπ−v(a)) = 0, implying
aπ−v(a) ∈ D×.

d) Show that the nonzero ideals of D are (πm) = {x ∈ F | v(x) ≥ m} and
that these are all distinct.

Proof. Let I be a nonzero ideal of D. Consider v(I) = {v(x) : x ∈ I} ⊂
N ∪ {0}. By the well-ordering principle of the natural numbers, v(I) has a
smallest element m. It follows that I ⊂ {x ∈ F | v(x) ≥ m}. There is x ∈ I
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such that v(x) = m. For some u ∈ D×, x = uπm, so πm = u−1x ∈ I. Then
(πm) ⊂ I.

We now show that (πm) = {x ∈ F | v(x) ≥ m}, from which it will follow
that I = (πm) by the inclusions (πm) ⊂ I ⊂ {x ∈ F | v(x) ≥ m}. We have
(πm) ⊂ {x ∈ F | v(x) ≥ m}, so let v(x) ≥ m. Since v(πm) = m ≤ v(x),
we have from part b that πm|x, so x = yπm ∈ (πm) for some y ∈ D. Thus
(πm) = {x ∈ F | v(x) ≥ m} as desired.

That these ideals are distinct follows from the inequality in {x ∈ F | v(x) ≥
m}; if {x ∈ F | v(x) ≥ m} = {x ∈ F | v(x) ≥ n} for m ̸= n, say m < n without
loss of generality, then there is an element x = πm ∈ {x ∈ F | v(x) ≥ m} with
v(x) = m < n, so v(x) ̸≥ n.
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3 Problem 3

Show that each ring below is a DVR by defining an appropriate discrete valua-
tion on its quotient field. Give explicit descriptions of the units and ideals.

a) F [[X]] where F is a field.

Proof. From previous homework, the fraction field is F ((X)). Define v(anX
n+

...) = n, the degree of the lowest non-zero monomial. Since (anX
n+...)(bmXm+

...) = anbmXn+m + ..., we see v(xy) = v(x) + v(y). Since (anX
n + ...) +

(bmXm + ...) = anX
n + ... for n < m, we see v(x+ y) ≥ min(v(x), v(y)), where

the inequality comes from the possibility of terms cancelling when n = m and
an = −bm. Since the least degree term for elements of F [[X]] has degree at
least 0, we see that F [[X]] is a DVR.

b) Z(p) = {a
b ∈ Q | p ∤ b} where p is a fixed prime number.

Proof. Note that Z ⊂ Z(p) ⊂ Q, so the fraction field isQ. Let v(n) be the highest
power of p dividing an integer n. Then extend v to Q by v(ab ) = v(a) − v(b).
Then v is a valuation on Q since it is a valuation on Z. For a

b ∈ Z(p), since
v(b) = 0, v(ab ) = v(a) ≥ 0, so Z(p) is a DVR.
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4 Problem 4

Let p be an odd prime.

a) Show that exactly half of the integers 1, ..., p − 1 are quadratic residues
mod p.

Proof. Consider the map x 7→ x2 on (Z/pZ)∗. By definition, the image are the
nonzero (mod p) quadratic residues. The kernel consists of x such that x2 ≡ 1.
Then p|(x−1)(x+1), so p|(x−1) or p|(x+1). Thus the kernel has two elements,
1 and p − 1. By an isomorphism theorem, the image of quadratic residues has
size (p− 1)/2.

b) Let m be a positive integer which is not a perfect square. Consider the
subring Sm = {a+ b

√
m | a, b ∈ Z} of R. Show that Ip = {a+ b

√
m | p|a, b} is

an ideal of Sm.

Proof. Let pa+ pb
√
m, pc+ pd

√
m ∈ Ip. Then (pa+ pb

√
m) + (pc+ pd

√
m) =

p(a+ c) + p(b+ d)
√
m ∈ Ip. For any c+ d

√
m ∈ Sm, (pa+ pb

√
m)(c+ d

√
m) =

p(ac+ bdm) + p(ad+ bc)
√
m ∈ Ip. Thus Ip is an ideal of Sm.

c) If m is a quadratic nonresidue mod p, show that Ip is a maximal ideal of
Sm and that Sm/Ip is a field having p2 elements.

Proof. Let J be an ideal strictly containing Ip, and let x+y
√
m ∈ J − Ip. Then

(x− y
√
m)(x+ y

√
m) = x2−my2 ∈ J . If p ∤ (x2−my2), then by the Euclidean

algorithm, p ∈ J implies 1 ∈ J , so J = Sm. Now suppose p|(x2 −my2). Since
x + y

√
m /∈ Ip, p ∤ x or p ∤ y. If p ∤ y, then y has an inverse z mod p. Then

x2 ≡ my2 implies (xz)2 ≡ m, which is a contradiction. Thus p ∤ x and p|y.
Since p|y, y

√
m ∈ J , so x ∈ J also. Since p ∤ x and p ∈ J , gcd(x, p) = 1 implies

1 ∈ J , so J = Sm.
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5 Problem 7.6.3

Let R,S be unital rings. Prove that every ideal of R × S is of the form I × J
where I is an ideal of R and J is an ideal of S.

Proof. Let π1 : R×S → R be the projection π1(r, s) = r, and let π2 : R×S → S
be the projection π2(r, s) = s. π1, π2 are surjective ring homomorphisms. Let
K be an ideal of R × S, and let I = π1(K), J = π2(K). Since the image of an
ideal in a surjective ring homomorphism is an ideal, I is an ideal of R and J is
an ideal of S.

If (a, b) ∈ K, then a = π1(a, b) ∈ I and b = π2(a, b) ∈ J , so (a, b) ∈ I × J .
Thus K ⊂ I×J . If (a, b) ∈ I×J , then (a, s) ∈ K for some s ∈ S and (r, b) ∈ K
for some r ∈ R. Then (1, 0)(a, s) = (a, 0) ∈ K and (0, 1)(r, b) = (0, b) ∈ K, so
(a, 0) + (0, b) = (a, b) ∈ K. Thus K = I × J .
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