MATH 7210 Homework 8

Andrea Bourque

November 2021

1 Problem 1

a) Let R be a PID. Show that R is unital.

Proof. Since R is trivially an ideal, we have that R = (a) for some nonzero $a \in R$. Thus any element $r \in R$ can be expressed as ab = r for some $b \in R$. In particular, there is some $c \in R$ such that ac = a. Then rc = abc = acb = ab = r for all $r \in R$, so c is a multiplicative identity.

b) Exhibit a non-principal ideal in $2\mathbb{Z}$.

Proof. The whole ring itself is not a principal ideal. A principal ideal (a) in $2\mathbb{Z}$ has the form $\{..., -4a, -2a, 0, 2a, 4a, ...\}$. Since $a \in 2\mathbb{Z}$, all the elements of (a) will then be strictly contained in $4\mathbb{Z}$, so it cannot be equal to all of $2\mathbb{Z}$. \Box

c) Show that the division algorithm fails in $2\mathbb{Z}$.

Proof. Consider a = 6, b = 4. Then there is no $q \in 2\mathbb{Z}$ such that 6 = 4q + r for $0 \leq r < 4$. This is because q = 0 gives r = 6 and q = 2 gives r = -2. Higher values of q will result in lower values of r, and lower values of q will result in higher values of r, so $r \geq 6$ or $r \leq -2$. Thus, the division algorithm fails. \Box

2 Problem 2

Let F be a field and v a discrete valuation on F.

a) Show that $D = \{x \in F \mid v(x) \ge 0\}$ is a sub-integral domain of F containing 1 and that $M = \{x \in F \mid v(x) > 0\}$ is the unique maximal ideal of D.

Proof. Notice that v(1) = v(1) + v(1), using the multiplicative property of v. Then v(1) = 0, so $1 \in D$. Since $v(0) = \infty$, $0 \in D$. For $x, y \in D$, $v(xy) = v(x) + v(y) \ge 0 + 0 = 0$, so $xy \in D$. $v(x+y) \ge \min(v(x), v(y)) \ge \min(0, 0) = 0$, so $x + y \in D$. Thus D is a subring of F. Since F is an integral domain, D is as well.

That M is an ideal follows from the defining inequality and the definition of v. In particular, $v(x + y) \ge \min(v(x), v(y)) > \min(0, 0) = 0$ for $x, y \in M$, and $v(xy) = v(x) + v(y) > v(x) \ge 0$ for $x \in D, y \in M$. Consider D - M = $\{x \in F \mid v(x) = 0\}$. If v(x) = 0, then $x \ne 0$, so $0 = v(1) = v(xx^{-1}) =$ $v(x) + v(x^{-1}) = v(x^{-1})$. Then $x^{-1} \in D$, so $D - M \subset D^{\times}$. Similarly, if $x \in D^{\times}$, then $0 = v(x) + v(x^{-1}) \ge v(x) \ge 0$ implies that v(x) = 0. Thus $D - M = D^{\times}$, implying that M is the unique maximal ideal of D.

b) Suppose $a, b \in D$ and $b \neq 0$. Show that b|a iff $v(a) \geq v(b)$. Conclude that v makes D into a Euclidean ring.

Proof. Suppose a = bc for $c \in D$. Then $v(a) = v(bc) = v(b) + v(c) \ge v(b)$. If $v(a) \ge v(b)$, then $v(ab^{-1}) = v(a) - v(b) \ge 0$, so $ab^{-1} \in D$. If v(a) < v(b), then a = 0b + a. Thus D has a division algorithm given by v. For $a, b \ne 0$, $v(ab) = v(a) + v(b) \ge v(a)$. Thus v is a Euclidean function on D.

c) Let $\pi \in D$ satisfy $v(\pi) = 1$. Show that π is irreducible and that if $a \in F$ is nonzero, then a can be expressed uniquely as $u\pi^{v(a)}$, with $u \in D^{\times}$. Conclude that F is the quotient field of D.

Proof. Suppose $\pi = ab$ for $a, b \in D$. Then $1 = v(\pi) = v(a) + v(b)$. Since v(a), v(b) are non-negative integers, the only possibility is that one of v(a) or v(b) is equal to 0, in which case one of a or b is a unit. Thus π is irreducible.

If v(a) > 0, then $v(\pi^{v(a)}) = v(\pi) + ... + v(\pi) = 1 + ... + 1 = v(a)$, where each sum has v(a) terms. If v(a) < 0, we see that $0 = v(1) = v(\pi^{v(a)}\pi^{-v(a)}) = v(\pi^{v(a)}) - v(a)$, so $v(\pi^{v(a)}) = v(a)$. If v(a) = 0, then $1 = \pi^{v(a)}$, so $v(a) = 0 = v(\pi^{v(a)})$. Thus in any case, $v(a) = v(\pi^{v(a)})$. Then $v(a\pi^{-v(a)}) = 0$, implying $a\pi^{-v(a)} \in D^{\times}$.

d) Show that the nonzero ideals of D are $(\pi^m) = \{x \in F \mid v(x) \ge m\}$ and that these are all distinct.

Proof. Let I be a nonzero ideal of D. Consider $v(I) = \{v(x) : x \in I\} \subset \mathbb{N} \cup \{0\}$. By the well-ordering principle of the natural numbers, v(I) has a smallest element m. It follows that $I \subset \{x \in F \mid v(x) \geq m\}$. There is $x \in I$

such that v(x) = m. For some $u \in D^{\times}$, $x = u\pi^m$, so $\pi^m = u^{-1}x \in I$. Then $(\pi^m) \subset I$.

We now show that $(\pi^m) = \{x \in F \mid v(x) \geq m\}$, from which it will follow that $I = (\pi^m)$ by the inclusions $(\pi^m) \subset I \subset \{x \in F \mid v(x) \geq m\}$. We have $(\pi^m) \subset \{x \in F \mid v(x) \geq m\}$, so let $v(x) \geq m$. Since $v(\pi^m) = m \leq v(x)$, we have from part b that $\pi^m | x$, so $x = y\pi^m \in (\pi^m)$ for some $y \in D$. Thus $(\pi^m) = \{x \in F \mid v(x) \geq m\}$ as desired.

That these ideals are distinct follows from the inequality in $\{x \in F \mid v(x) \geq m\}$; if $\{x \in F \mid v(x) \geq m\} = \{x \in F \mid v(x) \geq n\}$ for $m \neq n$, say m < n without loss of generality, then there is an element $x = \pi^m \in \{x \in F \mid v(x) \geq m\}$ with v(x) = m < n, so $v(x) \geq n$.

3 Problem 3

Show that each ring below is a DVR by defining an appropriate discrete valuation on its quotient field. Give explicit descriptions of the units and ideals.

a) F[[X]] where F is a field.

Proof. From previous homework, the fraction field is F((X)). Define $v(a_nX^n + ...) = n$, the degree of the lowest non-zero monomial. Since $(a_nX^n + ...)(b_mX^m + ...) = a_nb_mX^{n+m} + ...$, we see v(xy) = v(x) + v(y). Since $(a_nX^n + ...) + (b_mX^m + ...) = a_nX^n + ...$ for n < m, we see $v(x + y) \ge \min(v(x), v(y))$, where the inequality comes from the possibility of terms cancelling when n = m and $a_n = -b_m$. Since the least degree term for elements of F[[X]] has degree at least 0, we see that F[[X]] is a DVR.

b) $\mathbb{Z}_{(p)} = \{ \frac{a}{b} \in \mathbb{Q} \mid p \nmid b \}$ where p is a fixed prime number.

Proof. Note that $\mathbb{Z} \subset \mathbb{Z}_{(p)} \subset \mathbb{Q}$, so the fraction field is \mathbb{Q} . Let v(n) be the highest power of p dividing an integer n. Then extend v to \mathbb{Q} by $v(\frac{a}{b}) = v(a) - v(b)$. Then v is a valuation on \mathbb{Q} since it is a valuation on \mathbb{Z} . For $\frac{a}{b} \in \mathbb{Z}_{(p)}$, since $v(b) = 0, v(\frac{a}{b}) = v(a) \ge 0$, so $\mathbb{Z}_{(p)}$ is a DVR.

4 Problem 4

Let p be an odd prime.

a) Show that exactly half of the integers 1, ..., p-1 are quadratic residues mod p.

Proof. Consider the map $x \mapsto x^2$ on $(\mathbb{Z}/p\mathbb{Z})^*$. By definition, the image are the nonzero (mod p) quadratic residues. The kernel consists of x such that $x^2 \equiv 1$. Then p|(x-1)(x+1), so p|(x-1) or p|(x+1). Thus the kernel has two elements, 1 and p-1. By an isomorphism theorem, the image of quadratic residues has size (p-1)/2.

b) Let *m* be a positive integer which is not a perfect square. Consider the subring $S_m = \{a + b\sqrt{m} \mid a, b \in \mathbb{Z}\}$ of \mathbb{R} . Show that $I_p = \{a + b\sqrt{m} \mid p \mid a, b\}$ is an ideal of S_m .

Proof. Let $pa + pb\sqrt{m}$, $pc + pd\sqrt{m} \in I_p$. Then $(pa + pb\sqrt{m}) + (pc + pd\sqrt{m}) = p(a+c) + p(b+d)\sqrt{m} \in I_p$. For any $c + d\sqrt{m} \in S_m$, $(pa + pb\sqrt{m})(c + d\sqrt{m}) = p(ac + bdm) + p(ad + bc)\sqrt{m} \in I_p$. Thus I_p is an ideal of S_m .

c) If m is a quadratic nonresidue mod p, show that I_p is a maximal ideal of S_m and that S_m/I_p is a field having p^2 elements.

Proof. Let J be an ideal strictly containing I_p , and let $x + y\sqrt{m} \in J - I_p$. Then $(x - y\sqrt{m})(x + y\sqrt{m}) = x^2 - my^2 \in J$. If $p \nmid (x^2 - my^2)$, then by the Euclidean algorithm, $p \in J$ implies $1 \in J$, so $J = S_m$. Now suppose $p|(x^2 - my^2)$. Since $x + y\sqrt{m} \notin I_p$, $p \nmid x$ or $p \nmid y$. If $p \nmid y$, then y has an inverse $z \mod p$. Then $x^2 \equiv my^2$ implies $(xz)^2 \equiv m$, which is a contradiction. Thus $p \nmid x$ and p|y. Since $p|y, y\sqrt{m} \in J$, so $x \in J$ also. Since $p \nmid x$ and $p \in J$, gcd(x, p) = 1 implies $1 \in J$, so $J = S_m$.

5 Problem 7.6.3

Let R, S be unital rings. Prove that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

Proof. Let $\pi_1 : R \times S \to R$ be the projection $\pi_1(r, s) = r$, and let $\pi_2 : R \times S \to S$ be the projection $\pi_2(r, s) = s$. π_1, π_2 are surjective ring homomorphisms. Let K be an ideal of $R \times S$, and let $I = \pi_1(K), J = \pi_2(K)$. Since the image of an ideal in a surjective ring homomorphism is an ideal, I is an ideal of R and J is an ideal of S.

If $(a,b) \in K$, then $a = \pi_1(a,b) \in I$ and $b = \pi_2(a,b) \in J$, so $(a,b) \in I \times J$. Thus $K \subset I \times J$. If $(a,b) \in I \times J$, then $(a,s) \in K$ for some $s \in S$ and $(r,b) \in K$ for some $r \in R$. Then $(1,0)(a,s) = (a,0) \in K$ and $(0,1)(r,b) = (0,b) \in K$, so $(a,0) + (0,b) = (a,b) \in K$. Thus $K = I \times J$.