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1 Problem 1

Let R((X)) be the ring of formal Laurent series over the commutative ring R
with 1. Let R[[X]] be the subring of formal power series.

a) Show that R[[X]]* = {ao+ a1 X +...| ap € R*}.

Proof. Let ag+ a1 X + ... € R[[X]]*, and let by + b1 X + ... be its inverse. Then
1=(ag+a1 X+ ..)(bo+ b1 X +...) = aoby + (agby + a1b9) X + ..., implying that
agbg = 1. Thus ag € R*.

Now let ag € R* and let ag+a; X +... € R[[X]]. Let by = ay'. Now assume
that we have coefficients b, ..., b, such that (ag+a; X +...)(bo+b1 X +..0, X™) =
1+0(X™ 1), The coefficient of X"t in (ag+a3 X +...)(bo+b1 X +...4+b, 1 X" 1)

is agbp+1 + a1b, + ... + an+1bo. For this to be 0, we have b,41 = fao_l(albn +
..t ant1bo). Therefore, by induction, we have an inverse to ag+a1 X + ... given
by bo + b1 X + ... O

b) If R is an integral domain, what is R((X))*?

Proof. A nonzero element in R((X)) is uniquely expressed as X" (ag+a1 X +...)
for ng € Z and ag # 0. Consider some other nonzero element X ™ (bo+b; X +...).
Their product is X™+™0 (agby + (aghy + a1bg)X + ...). Since ag,by # 0 and R
is an integral domain, agbg # 0, so X™0T™0(qobg + (aghy + a1bg)X + ...) has a
lowest degree term of X ™0+  Thus, if the product is to be 1, we must have
no +mo = 0 and apbg = 1. Thus R((X))* consists of X" (ag + a1 X + ...) with
ag € R*. O

¢) Show that if R is an integral domain, so are R[[X]] and R((X)).

Proof. Since R[[X]] is a subring of R((X)), it suffices to show that R((X))
is an integral domain. To that end, let X™ (ag + a1 X + ...) and X™°(by +
b1 X + ...) be nonzero elements in R((X)); that is, ag,bg # 0. The product is
X0t ™0 (qqbg + (aghy +a1bg) X +...). Since R is an integral domain, agby # 0, so
Xm0t (q4bg+(apgby +arbg) X +...) # 0. Thus R((X)) is an integral domain. [

d) If F is a field, show that F'((X)) is the fraction field of F[[X]].



Proof. Since a field is an integral domain, we have that F((X))* consists of
X™(ag+a1X +...) with ag € F* by part b. But F* = F — {0}, so all nonzero
elements of F((X)) are invertible. Thus F((X)) itself is a field, containing
F[[X]] as a subring. By part ¢, we have F[[X]] is an integral domain. By
Corollary 7.5.16 in Dummit and Foote, the fraction field of F[[X]] is then the
subfield of F((X)) generated by F[[X]]. But F((X)) is generated by F[[X]],
since the nonzero elements are X" (ag+a1 X +...), where ap+a1 X +... € F[[X]],
and X™ or (X™)~! = X0 are in F[[X]]. Thus F((X)) is the fraction field
of F[[X]]. O

e) Show that the fraction field of Z[[X]] is a proper subfield of Q((X)).

Proof. We again have that Z[[X]] is an integral domain contained in the field
Q((X)), so by Corollary 7.5.16 in Dummit and Foote, the fraction field of Z[[X]]
is a subfield of Q((X)). It suffices to find an element of Q((X)) which is not
contained in the fraction field of Z[[X]]. Enumerate the prime numbers as
P1,D2,.... Then consider f(X) = 1+pi1X+ p%X2+... . Suppose ag+a1 X +... €
Z[[X]] and (ao + a1 X +...)f € Z[[X]]. Then for all n, 2 + ..+ a, € Z. In
the sum, the only time the prime p,, occurs in a denominator is in 22. Then, in
order for this to be an integer, p, must divide ag. Since this hold for all primes
Dn, we must have that ag = 0. Then we must have (a1 + a2 X + ...)f € Z[[X]].
Inductively, we can show that a, = 0 for all n, so (ap + a1 X + ...)f = 0.
Therefore, f cannot be in the fraction field of Z[[X]], since it is nonzero, yet
z[[ X1 f nz[[X]] = {0} 0



2 Problem 2

Let R be commutative with 1, and let f(X) € R[X] be monic of degree n > 1.
Let S = R[X]/(f(X)). p(X) denotes the coset of p(X) in S.

a) Show that every element of S is of the form P for some polynomial p of
degree less than n.

Proof. Let f(X) =ap+ a1 X +...X". Let g € S with ¢ = by + ...b,, X™, where
m > n. Since we are quotienting by (f(X)), we can inductively reduce ¢ by
taking ¢ = q¢ — b, X™ " f, which is in the same coset as ¢, and furthermore
has degree less than m. By repeating this process, we gain a representative p
forge S. O

b) Show that the above representation is unique.

Proof. 1If p, q are representatives for the same coset in .S, both having degree less
than n, we must have f|(p — ¢). But the degree of p — ¢ is less than n, which is
a contradiction, unless p = q. O

¢) If f = pqg with p,q of degree less than n, show that p is a zero divisor in
S.

Proof. We have (p)(g) =pq = f = 0. If p = 0, that would imply f|p, which is
impossible by degree. Further, p # 0 since that would imply f = 0. Similarly,
g # 0. Thus we have two nonzero elements in S multiplying to the 0 element. [J



3 Problem 3

a) Show that S = (Z/2Z)[X]/(X? + X + 1) has 4 elements.

Proof. By the results of problem 2, each element of S has a unique represen-
tative by a polynomial with degree less than 2. There are 4 such polynomials:
0,1, X, X +1. O

b) Show that (.S, +) is isomorphic to Z/2Z x Z/27Z.

Proof. An explicit isomorphism is given by ag + a1 X — (ag,a1). In particular,
land X generate S: 1+1=0, X +X =0,and X +1=X + 1. O

¢) Show that (S — {0}, -) is isomorphic to Z/3Z. Conclude that S is a field
with 4 elements.

Proof. An explicit isomorphism is given by T + 0,X + 1, X +1 +— 2. In
particular, X generates S — {0}: X2 = (X2+ X +1)+ X +1, so X =X+1
X = XX+1)=X24+X=X24+X+1+1,50 X = 1. Since each non-zero

element of S is invertible (X (X +1) =1), S is a field. O




4 Problem 7.3.15

Let X be a nonempty set and let P(X) be the Boolean ring on the power set,
with addition by symmetric difference and multiplication by intersection. Let
R be the ring of all functions from X to Z/27Z. For each A € P(X) define the
function x4 : X — Z/2Z by xa(z) =1if z € A and xa(zx) =0 if z ¢ A. Prove
that ¢ : P(X) — R defined by A+ x4 is a ring isomorphism.

Proof. Recall that the additive identity in P(X) is (), and the multiplicative
identity is X. Furthermore, the multiplicative identity in R is the constant
function 1(z), and the additive identity is the constant function 0(x).

First we show that ¢ is a ring homomorphism. ¥ (X) = xx, and xx(z) =1
for all x € X by definition, since z € X. Thus xx(z) = 1(x).

Next, let C = A+ B =(A—B)U (B —A). ¥(C) = xc satisfies xo(z) =1
ifreC. Thenex €e A—Borx e B—A. If v € A— B, then xa(z) =1 and
xB(z) =0,80 xc(z) =1=140= xa(x)+xp(x). Similarly, if z € B— A, then
Xc(@)=1=0+1=xa(x)+xp(x). ez ¢ C,thenz € ANBorz ¢ AUB. If
x € AN B, then xya(z) = xp(x) =1,and xc(z) =0=1+1= xa(z) + x5(x).
If ¢ AUB, then xa(z) = xp(r) =0, and xc(z) =0 =040 = xa(x)+x5(x).
In all possible cases, we have xco(x) = xa(x)+ x5 (), showing that v(A+ B) =
b(A) + 0(B).

Let C = A-B =ANB. Then xc(x) =1if z € AN B and Yc(z) =0
ifx éd ANB;x ¢ Aorx ¢ B. It € AN B, then ya(z) = xp(x) = 1, and
xc(x)=1=1-1=yxa(x)xp(z). If x ¢ AN B, then one of y4(x) and xp(x)
is 0, implying their product is 0. Then yc(z) = 0 = xa(x)xp(x). In any case,
W(A- B) = p(A)(B).

Now we show % is an isomorphism. If ¢(A) = 0(x), then x4(z) = 0 for all
z € X, implying ¢ A for all zx € X. As A C X, this implies A = 0, so ¢ has
0 kernel. This means v is injective.

Now let f: X — Z/2Z. Let A = f~1({1}). Then ya(z) = 1ifz € A4, i.e.
if f(x) =1, and xa(zx) =0if & ¢ A, ie. if f(z) # 1. But f(z) # 1 implies
f(z) = 0. Thus x4 = f, implying that ¥(A) = f, so ¢ is surjective. Thus 1) is
a ring isomorphism. O



5 Problem 7.5.3

Let F be a field. Prove that F' contains a unique smallest subfield F; and that
F, is isomorphic to either Q or Z/pZ for some prime p.

Proof. Consider the subfield F generated by 0 and 1. Since any subfield of F
contains 0 and 1, they must necessarily contain Fy. It follows then that Fj is
the unique smallest subfield of F.

Now consider a homomorphism f : Z — F. Since f(0) = 0, f(1) = 1,
f(Z) C Fy. Now, if ker f = 0, then Z = f(Z), and so Fy contains the fraction
field of f(Z), which is isomorphic to Q. But Fy is the smallest subfield of F,
implying Fy = Q.

If ker f # 0, then ker f = (n) for some integer n. ker f # Z since f(0) =
0# 1= f(1). Assume n = mk with m,k < n. Then f(m)f(k) = f(mk) =
f(n) =0. But f(m), f(k) # 0 since m, k ¢ (n). Thus f(m) is a zero divisor in
F, which is impossible. It follows that n must be prime, say n = p. Then Fj
contains f(Z) = Z/pZ, which is a field. Since Fjy is the smallest subfield of F,
F = 7Z/pZ. O



