MATH 7210 Homework 7

Andrea Bourque

October 2021

1 Problem 1

Let R((X)) be the ring of formal Laurent series over the commutative ring R with 1. Let R[[X]] be the subring of formal power series.

a) Show that $R[[X]]^{\times} = \{a_0 + a_1 X + \dots \mid a_0 \in R^{\times}\}.$

Proof. Let $a_0 + a_1X + ... \in R[[X]]^{\times}$, and let $b_0 + b_1X + ...$ be its inverse. Then $1 = (a_0 + a_1X + ...)(b_0 + b_1X + ...) = a_0b_0 + (a_0b_1 + a_1b_0)X + ...$, implying that $a_0b_0 = 1$. Thus $a_0 \in R^{\times}$.

Now let $a_0 \in R^{\times}$ and let $a_0 + a_1X + \ldots \in R[[X]]$. Let $b_0 = a_0^{-1}$. Now assume that we have coefficients b_0, \ldots, b_n such that $(a_0 + a_1X + \ldots)(b_0 + b_1X + \ldots + b_nX^n) = 1 + O(X^{n+1})$. The coefficient of X^{n+1} in $(a_0 + a_1X + \ldots)(b_0 + b_1X + \ldots + b_{n+1}X^{n+1})$ is $a_0b_{n+1} + a_1b_n + \ldots + a_{n+1}b_0$. For this to be 0, we have $b_{n+1} = -a_0^{-1}(a_1b_n + \ldots + a_{n+1}b_0)$. Therefore, by induction, we have an inverse to $a_0 + a_1X + \ldots$ given by $b_0 + b_1X + \ldots$.

b) If R is an integral domain, what is $R((X))^{\times}$?

Proof. A nonzero element in R((X)) is uniquely expressed as $X^{n_0}(a_0+a_1X+...)$ for $n_0 \in \mathbb{Z}$ and $a_0 \neq 0$. Consider some other nonzero element $X^{m_0}(b_0+b_1X+...)$. Their product is $X^{n_0+m_0}(a_0b_0+(a_0b_1+a_1b_0)X+...)$. Since $a_0, b_0 \neq 0$ and R is an integral domain, $a_0b_0 \neq 0$, so $X^{n_0+m_0}(a_0b_0+(a_0b_1+a_1b_0)X+...)$ has a lowest degree term of $X^{n_0+m_0}$. Thus, if the product is to be 1, we must have $n_0 + m_0 = 0$ and $a_0b_0 = 1$. Thus $R((X))^{\times}$ consists of $X^{n_0}(a_0+a_1X+...)$ with $a_0 \in R^{\times}$. □

c) Show that if R is an integral domain, so are R[[X]] and R((X)).

Proof. Since R[[X]] is a subring of R((X)), it suffices to show that R((X)) is an integral domain. To that end, let $X^{n_0}(a_0 + a_1X + ...)$ and $X^{m_0}(b_0 + b_1X + ...)$ be nonzero elements in R((X)); that is, $a_0, b_0 \neq 0$. The product is $X^{n_0+m_0}(a_0b_0 + (a_0b_1 + a_1b_0)X + ...)$. Since R is an integral domain, $a_0b_0 \neq 0$, so $X^{n_0+m_0}(a_0b_0 + (a_0b_1 + a_1b_0)X + ...) \neq 0$. Thus R((X)) is an integral domain. \Box

d) If F is a field, show that F((X)) is the fraction field of F[[X]].

Proof. Since a field is an integral domain, we have that $F((X))^{\times}$ consists of $X^{n_0}(a_0 + a_1X + ...)$ with $a_0 \in F^{\times}$ by part b. But $F^{\times} = F - \{0\}$, so all nonzero elements of F((X)) are invertible. Thus F((X)) itself is a field, containing F[[X]] as a subring. By part c, we have F[[X]] is an integral domain. By Corollary 7.5.16 in Dummit and Foote, the fraction field of F[[X]] is then the subfield of F((X)) generated by F[[X]]. But F((X)) is generated by F[[X]], since the nonzero elements are $X^{n_0}(a_0+a_1X+...)$, where $a_0+a_1X+... \in F[[X]]$, and X^{n_0} or $(X^{n_0})^{-1} = X^{-n_0}$ are in F[[X]]. Thus F((X)) is the fraction field of F[[X]]. □

e) Show that the fraction field of $\mathbb{Z}[[X]]$ is a proper subfield of $\mathbb{Q}((X))$.

Proof. We again have that $\mathbb{Z}[[X]]$ is an integral domain contained in the field $\mathbb{Q}((X))$, so by Corollary 7.5.16 in Dummit and Foote, the fraction field of $\mathbb{Z}[[X]]$ is a subfield of $\mathbb{Q}((X))$. It suffices to find an element of $\mathbb{Q}((X))$ which is not contained in the fraction field of $\mathbb{Z}[[X]]$. Enumerate the prime numbers as p_1, p_2, \ldots Then consider $f(X) = 1 + \frac{1}{p_1}X + \frac{1}{p_2}X^2 + \ldots$. Suppose $a_0 + a_1X + \ldots \in \mathbb{Z}[[X]]$ and $(a_0 + a_1X + \ldots)f \in \mathbb{Z}[[X]]$. Then for all $n, \frac{a_0}{p_n} + \ldots + a_n \in \mathbb{Z}$. In the sum, the only time the prime p_n occurs in a denominator is in $\frac{a_0}{p_n}$. Then, in order for this to be an integer, p_n must divide a_0 . Since this hold for all primes p_n , we must have that $a_0 = 0$. Then we must have $(a_1 + a_2X + \ldots)f \in \mathbb{Z}[[X]]$. Inductively, we can show that $a_n = 0$ for all n, so $(a_0 + a_1X + \ldots)f = 0$. Therefore, f cannot be in the fraction field of $\mathbb{Z}[[X]]$, since it is nonzero, yet $\mathbb{Z}[[X]]f \cap \mathbb{Z}[[X]] = \{0\}$. □

2 Problem 2

Let R be commutative with 1, and let $f(X) \in R[X]$ be monic of degree $n \ge 1$. Let S = R[X]/(f(X)). $\overline{p(X)}$ denotes the coset of p(X) in S.

a) Show that every element of S is of the form \overline{p} for some polynomial p of degree less than n.

Proof. Let $f(X) = a_0 + a_1 X + ... X^n$. Let $\overline{q} \in S$ with $q = b_0 + ... b_m X^m$, where $m \geq n$. Since we are quotienting by (f(X)), we can inductively reduce q by taking $q_1 = q - b_m X^{m-n} f$, which is in the same coset as q, and furthermore has degree less than m. By repeating this process, we gain a representative p for $\overline{q} \in S$.

b) Show that the above representation is unique.

Proof. If p, q are representatives for the same coset in S, both having degree less than n, we must have f|(p-q). But the degree of p-q is less than n, which is a contradiction, unless p = q.

c) If f = pq with p, q of degree less than n, show that \overline{p} is a zero divisor in S.

Proof. We have $(\overline{p})(\overline{q}) = \overline{pq} = \overline{f} = \overline{0}$. If $\overline{p} = \overline{0}$, that would imply f|p, which is impossible by degree. Further, $p \neq 0$ since that would imply f = 0. Similarly, $\overline{q} \neq \overline{0}$. Thus we have two nonzero elements in S multiplying to the 0 element. \Box

3 Problem 3

a) Show that $S = (\mathbb{Z}/2\mathbb{Z})[X]/(X^2 + X + 1)$ has 4 elements.

Proof. By the results of problem 2, each element of S has a unique representative by a polynomial with degree less than 2. There are 4 such polynomials: 0, 1, X, X + 1.

b) Show that (S, +) is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof. An explicit isomorphism is given by $\overline{a_0 + a_1 X} \mapsto (a_0, a_1)$. In particular, $\overline{1}$ and \overline{X} generate $S: \overline{1} + \overline{1} = \overline{0}, \overline{X} + \overline{X} = \overline{0}, \text{ and } \overline{X} + \overline{1} = \overline{X} + \overline{1}$. \Box

c) Show that $(S - \{\overline{0}\}, \cdot)$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$. Conclude that S is a field with 4 elements.

Proof. An explicit isomorphism is given by $\overline{1} \mapsto 0, \overline{X} \mapsto 1, \overline{X+1} \mapsto 2$. In particular, \overline{X} generates $S - \{0\}$: $X^2 = (X^2 + X + 1) + X + 1$, so $\overline{X}^2 = \overline{X+1}$. $\overline{X}^3 = \overline{X}(\overline{X+1}) = \overline{X^2 + X} = \overline{X^2 + X + 1 + 1}$, so $\overline{X}^3 = \overline{1}$. Since each non-zero element of S is invertible $(\overline{X}(\overline{X+1}) = \overline{1}), S$ is a field. \Box

4 Problem 7.3.15

Let X be a nonempty set and let $\mathcal{P}(X)$ be the Boolean ring on the power set, with addition by symmetric difference and multiplication by intersection. Let R be the ring of all functions from X to $\mathbb{Z}/2\mathbb{Z}$. For each $A \in \mathcal{P}(X)$ define the function $\chi_A : X \to \mathbb{Z}/2\mathbb{Z}$ by $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ if $x \notin A$. Prove that $\psi : \mathcal{P}(X) \to R$ defined by $A \mapsto \chi_A$ is a ring isomorphism.

Proof. Recall that the additive identity in $\mathcal{P}(X)$ is \emptyset , and the multiplicative identity is X. Furthermore, the multiplicative identity in R is the constant function 1(x), and the additive identity is the constant function 0(x).

First we show that ψ is a ring homomorphism. $\psi(X) = \chi_X$, and $\chi_X(x) = 1$ for all $x \in X$ by definition, since $x \in X$. Thus $\chi_X(x) = 1(x)$.

Next, let $C = A + B = (A - B) \cup (B - A)$. $\psi(C) = \chi_C$ satisfies $\chi_C(x) = 1$ if $x \in C$. Then $x \in A - B$ or $x \in B - A$. If $x \in A - B$, then $\chi_A(x) = 1$ and $\chi_B(x) = 0$, so $\chi_C(x) = 1 = 1 + 0 = \chi_A(x) + \chi_B(x)$. Similarly, if $x \in B - A$, then $\chi_C(x) = 1 = 0 + 1 = \chi_A(x) + \chi_B(x)$. If $x \notin C$, then $x \in A \cap B$ or $x \notin A \cup B$. If $x \in A \cap B$, then $\chi_A(x) = \chi_B(x) = 1$, and $\chi_C(x) = 0 = 1 + 1 = \chi_A(x) + \chi_B(x)$. If $x \notin A \cup B$, then $\chi_A(x) = \chi_B(x) = 0$, and $\chi_C(x) = 0 = 0 + 0 = \chi_A(x) + \chi_B(x)$. In all possible cases, we have $\chi_C(x) = \chi_A(x) + \chi_B(x)$, showing that $\psi(A + B) = \psi(A) + \psi(B)$.

Let $C = A \cdot B = A \cap B$. Then $\chi_C(x) = 1$ if $x \in A \cap B$ and $\psi_C(x) = 0$ if $x \notin A \cap B$; $x \notin A$ or $x \notin B$. If $x \in A \cap B$, then $\chi_A(x) = \chi_B(x) = 1$, and $\chi_C(x) = 1 = 1 \cdot 1 = \chi_A(x)\chi_B(x)$. If $x \notin A \cap B$, then one of $\chi_A(x)$ and $\chi_B(x)$ is 0, implying their product is 0. Then $\chi_C(x) = 0 = \chi_A(x)\chi_B(x)$. In any case, $\psi(A \cdot B) = \psi(A)\psi(B)$.

Now we show ψ is an isomorphism. If $\psi(A) = 0(x)$, then $\chi_A(x) = 0$ for all $x \in X$, implying $x \notin A$ for all $x \in X$. As $A \subset X$, this implies $A = \emptyset$, so ψ has 0 kernel. This means ψ is injective.

Now let $f: X \to \mathbb{Z}/2\mathbb{Z}$. Let $A = f^{-1}(\{1\})$. Then $\chi_A(x) = 1$ if $x \in A$, i.e. if f(x) = 1, and $\chi_A(x) = 0$ if $x \notin A$, i.e. if $f(x) \neq 1$. But $f(x) \neq 1$ implies f(x) = 0. Thus $\chi_A = f$, implying that $\psi(A) = f$, so ψ is surjective. Thus ψ is a ring isomorphism.

5 Problem 7.5.3

Let F be a field. Prove that F contains a unique smallest subfield F_0 and that F_0 is isomorphic to either \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$ for some prime p.

Proof. Consider the subfield F_0 generated by 0 and 1. Since any subfield of F contains 0 and 1, they must necessarily contain F_0 . It follows then that F_0 is the unique smallest subfield of F.

Now consider a homomorphism $f : \mathbb{Z} \to F$. Since f(0) = 0, f(1) = 1, $f(\mathbb{Z}) \subset F_0$. Now, if ker f = 0, then $\mathbb{Z} \cong f(\mathbb{Z})$, and so F_0 contains the fraction field of $f(\mathbb{Z})$, which is isomorphic to \mathbb{Q} . But F_0 is the smallest subfield of F, implying $F_0 \cong \mathbb{Q}$.

If ker $f \neq 0$, then ker f = (n) for some integer n. ker $f \neq \mathbb{Z}$ since $f(0) = 0 \neq 1 = f(1)$. Assume n = mk with m, k < n. Then f(m)f(k) = f(mk) = f(n) = 0. But $f(m), f(k) \neq 0$ since $m, k \notin (n)$. Thus f(m) is a zero divisor in F, which is impossible. It follows that n must be prime, say n = p. Then F_0 contains $f(\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$, which is a field. Since F_0 is the smallest subfield of F, $F \cong \mathbb{Z}/p\mathbb{Z}$.