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1 Problem 1

Let R((X)) be the ring of formal Laurent series over the commutative ring R
with 1. Let R[[X]] be the subring of formal power series.

a) Show that R[[X]]× = {a0 + a1X + ... | a0 ∈ R×}.

Proof. Let a0 + a1X + ... ∈ R[[X]]×, and let b0 + b1X + ... be its inverse. Then
1 = (a0 + a1X + ...)(b0 + b1X + ...) = a0b0 + (a0b1 + a1b0)X + ..., implying that
a0b0 = 1. Thus a0 ∈ R×.

Now let a0 ∈ R× and let a0+a1X+ ... ∈ R[[X]]. Let b0 = a−1
0 . Now assume

that we have coefficients b0, ..., bn such that (a0+a1X+...)(b0+b1X+...bnX
n) =

1+O(Xn+1). The coefficient ofXn+1 in (a0+a1X+...)(b0+b1X+...+bn+1X
n+1)

is a0bn+1 + a1bn + ...+ an+1b0. For this to be 0, we have bn+1 = −a−1
0 (a1bn +

...+an+1b0). Therefore, by induction, we have an inverse to a0+a1X+ ... given
by b0 + b1X + ....

b) If R is an integral domain, what is R((X))×?

Proof. A nonzero element in R((X)) is uniquely expressed as Xn0(a0+a1X+...)
for n0 ∈ Z and a0 ̸= 0. Consider some other nonzero elementXm0(b0+b1X+...).
Their product is Xn0+m0(a0b0 + (a0b1 + a1b0)X + ...). Since a0, b0 ̸= 0 and R
is an integral domain, a0b0 ̸= 0, so Xn0+m0(a0b0 + (a0b1 + a1b0)X + ...) has a
lowest degree term of Xn0+m0 . Thus, if the product is to be 1, we must have
n0 +m0 = 0 and a0b0 = 1. Thus R((X))× consists of Xn0(a0 + a1X + ...) with
a0 ∈ R×.

c) Show that if R is an integral domain, so are R[[X]] and R((X)).

Proof. Since R[[X]] is a subring of R((X)), it suffices to show that R((X))
is an integral domain. To that end, let Xn0(a0 + a1X + ...) and Xm0(b0 +
b1X + ...) be nonzero elements in R((X)); that is, a0, b0 ̸= 0. The product is
Xn0+m0(a0b0+(a0b1+a1b0)X+ ...). Since R is an integral domain, a0b0 ̸= 0, so
Xn0+m0(a0b0+(a0b1+a1b0)X+...) ̸= 0. Thus R((X)) is an integral domain.

d) If F is a field, show that F ((X)) is the fraction field of F [[X]].
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Proof. Since a field is an integral domain, we have that F ((X))× consists of
Xn0(a0 + a1X + ...) with a0 ∈ F× by part b. But F× = F −{0}, so all nonzero
elements of F ((X)) are invertible. Thus F ((X)) itself is a field, containing
F [[X]] as a subring. By part c, we have F [[X]] is an integral domain. By
Corollary 7.5.16 in Dummit and Foote, the fraction field of F [[X]] is then the
subfield of F ((X)) generated by F [[X]]. But F ((X)) is generated by F [[X]],
since the nonzero elements are Xn0(a0+a1X+...), where a0+a1X+... ∈ F [[X]],
and Xn0 or (Xn0)−1 = X−n0 are in F [[X]]. Thus F ((X)) is the fraction field
of F [[X]].

e) Show that the fraction field of Z[[X]] is a proper subfield of Q((X)).

Proof. We again have that Z[[X]] is an integral domain contained in the field
Q((X)), so by Corollary 7.5.16 in Dummit and Foote, the fraction field of Z[[X]]
is a subfield of Q((X)). It suffices to find an element of Q((X)) which is not
contained in the fraction field of Z[[X]]. Enumerate the prime numbers as
p1, p2, .... Then consider f(X) = 1+ 1

p1
X+ 1

p2
X2+ ... . Suppose a0+a1X+ ... ∈

Z[[X]] and (a0 + a1X + ...)f ∈ Z[[X]]. Then for all n, a0

pn
+ ... + an ∈ Z. In

the sum, the only time the prime pn occurs in a denominator is in a0

pn
. Then, in

order for this to be an integer, pn must divide a0. Since this hold for all primes
pn, we must have that a0 = 0. Then we must have (a1 + a2X + ...)f ∈ Z[[X]].
Inductively, we can show that an = 0 for all n, so (a0 + a1X + ...)f = 0.
Therefore, f cannot be in the fraction field of Z[[X]], since it is nonzero, yet
Z[[X]]f ∩ Z[[X]] = {0}.
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2 Problem 2

Let R be commutative with 1, and let f(X) ∈ R[X] be monic of degree n ≥ 1.
Let S = R[X]/(f(X)). p(X) denotes the coset of p(X) in S.

a) Show that every element of S is of the form p for some polynomial p of
degree less than n.

Proof. Let f(X) = a0 + a1X + ...Xn. Let q ∈ S with q = b0 + ...bmX
m, where

m ≥ n. Since we are quotienting by (f(X)), we can inductively reduce q by
taking q1 = q − bmX

m−nf , which is in the same coset as q, and furthermore
has degree less than m. By repeating this process, we gain a representative p
for q ∈ S.

b) Show that the above representation is unique.

Proof. If p, q are representatives for the same coset in S, both having degree less
than n, we must have f |(p− q). But the degree of p− q is less than n, which is
a contradiction, unless p = q.

c) If f = pq with p, q of degree less than n, show that p is a zero divisor in
S.

Proof. We have (p)(q) = pq = f = 0. If p = 0, that would imply f |p, which is
impossible by degree. Further, p ̸= 0 since that would imply f = 0. Similarly,
q ̸= 0. Thus we have two nonzero elements in S multiplying to the 0 element.
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3 Problem 3

a) Show that S = (Z/2Z)[X]/(X2 +X + 1) has 4 elements.

Proof. By the results of problem 2, each element of S has a unique represen-
tative by a polynomial with degree less than 2. There are 4 such polynomials:
0, 1, X,X + 1.

b) Show that (S,+) is isomorphic to Z/2Z× Z/2Z.

Proof. An explicit isomorphism is given by a0 + a1X 7→ (a0, a1). In particular,
1 and X generate S: 1 + 1 = 0, X +X = 0, and X + 1 = X + 1.

c) Show that (S − {0}, ·) is isomorphic to Z/3Z. Conclude that S is a field
with 4 elements.

Proof. An explicit isomorphism is given by 1 7→ 0, X 7→ 1, X + 1 7→ 2. In

particular, X generates S − {0}: X2 = (X2 +X + 1) +X + 1, so X
2
= X + 1.

X
3
= X(X + 1) = X2 +X = X2 +X + 1 + 1, so X

3
= 1. Since each non-zero

element of S is invertible (X(X + 1) = 1), S is a field.
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4 Problem 7.3.15

Let X be a nonempty set and let P(X) be the Boolean ring on the power set,
with addition by symmetric difference and multiplication by intersection. Let
R be the ring of all functions from X to Z/2Z. For each A ∈ P(X) define the
function χA : X → Z/2Z by χA(x) = 1 if x ∈ A and χA(x) = 0 if x /∈ A. Prove
that ψ : P(X) → R defined by A 7→ χA is a ring isomorphism.

Proof. Recall that the additive identity in P(X) is ∅, and the multiplicative
identity is X. Furthermore, the multiplicative identity in R is the constant
function 1(x), and the additive identity is the constant function 0(x).

First we show that ψ is a ring homomorphism. ψ(X) = χX , and χX(x) = 1
for all x ∈ X by definition, since x ∈ X. Thus χX(x) = 1(x).

Next, let C = A+ B = (A− B) ∪ (B − A). ψ(C) = χC satisfies χC(x) = 1
if x ∈ C. Then x ∈ A − B or x ∈ B − A. If x ∈ A − B, then χA(x) = 1 and
χB(x) = 0, so χC(x) = 1 = 1+0 = χA(x)+χB(x). Similarly, if x ∈ B−A, then
χC(x) = 1 = 0+ 1 = χA(x) +χB(x). If x /∈ C, then x ∈ A∩B or x /∈ A∪B. If
x ∈ A ∩B, then χA(x) = χB(x) = 1, and χC(x) = 0 = 1 + 1 = χA(x) + χB(x).
If x /∈ A∪B, then χA(x) = χB(x) = 0, and χC(x) = 0 = 0+0 = χA(x)+χB(x).
In all possible cases, we have χC(x) = χA(x)+χB(x), showing that ψ(A+B) =
ψ(A) + ψ(B).

Let C = A · B = A ∩ B. Then χC(x) = 1 if x ∈ A ∩ B and ψC(x) = 0
if x /∈ A ∩ B; x /∈ A or x /∈ B. If x ∈ A ∩ B, then χA(x) = χB(x) = 1, and
χC(x) = 1 = 1 · 1 = χA(x)χB(x). If x /∈ A ∩ B, then one of χA(x) and χB(x)
is 0, implying their product is 0. Then χC(x) = 0 = χA(x)χB(x). In any case,
ψ(A ·B) = ψ(A)ψ(B).

Now we show ψ is an isomorphism. If ψ(A) = 0(x), then χA(x) = 0 for all
x ∈ X, implying x /∈ A for all x ∈ X. As A ⊂ X, this implies A = ∅, so ψ has
0 kernel. This means ψ is injective.

Now let f : X → Z/2Z. Let A = f−1({1}). Then χA(x) = 1 if x ∈ A, i.e.
if f(x) = 1, and χA(x) = 0 if x /∈ A, i.e. if f(x) ̸= 1. But f(x) ̸= 1 implies
f(x) = 0. Thus χA = f , implying that ψ(A) = f , so ψ is surjective. Thus ψ is
a ring isomorphism.
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5 Problem 7.5.3

Let F be a field. Prove that F contains a unique smallest subfield F0 and that
F0 is isomorphic to either Q or Z/pZ for some prime p.

Proof. Consider the subfield F0 generated by 0 and 1. Since any subfield of F
contains 0 and 1, they must necessarily contain F0. It follows then that F0 is
the unique smallest subfield of F .

Now consider a homomorphism f : Z → F . Since f(0) = 0, f(1) = 1,
f(Z) ⊂ F0. Now, if ker f = 0, then Z ∼= f(Z), and so F0 contains the fraction
field of f(Z), which is isomorphic to Q. But F0 is the smallest subfield of F ,
implying F0

∼= Q.
If ker f ̸= 0, then ker f = (n) for some integer n. ker f ̸= Z since f(0) =

0 ̸= 1 = f(1). Assume n = mk with m, k < n. Then f(m)f(k) = f(mk) =
f(n) = 0. But f(m), f(k) ̸= 0 since m, k /∈ (n). Thus f(m) is a zero divisor in
F , which is impossible. It follows that n must be prime, say n = p. Then F0

contains f(Z) ∼= Z/pZ, which is a field. Since F0 is the smallest subfield of F ,
F ∼= Z/pZ.
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