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1 Problem 1

Let p > 3 be a prime congruent to 3 mod 4. Show that there are exactly four
groups of order 4p up to isomorphism.

Proof. By the Sylow theorems, we have n2 = 1 or p, and np = 1, since 2, 4 6≡ 1
mod p. Thus a group of order 4p has a normal subgroup of order p; this is Z/pZ
up to isomorphism.

If n2 = 1, then the group is a direct product of Z/pZ with a group of order
4. There are exactly two groups of order 4 up to isomorphism, namely Z/4Z
and Z/2Z×Z/2Z. So in the case n2 = 1, we have the groups Z/pZ×Z/4Z and
Z/pZ× Z/2Z× Z/2Z.

If n2 = p, we must consider semidirect products. Let H = Z/pZ. Then
Aut(H) ∼= Z/(p− 1)Z. Since p ≡ 3 mod 4, there are no automorphisms of
order 4. Furthermore, a non trivial image of the groups Z/4Z and Z/2Z×Z/2Z
must be an order 2 subgroup in Aut(H) by Lagrange’s theorem. Again, since
p ≡ 3 mod 4, this means that the image will be a 2-Sylow subgroup, which
are all conjugate. By Problem 5.5.6, this means that regardless of the choice
of ϕ : K → Aut(H), where K is either Z/4Z or Z/2Z × Z/2Z, the semidirect
products will be isomorphic. Thus there are two more groups of order 4p up
to isomorphism, Z/pZ oϕ (Z/2Z × Z/2Z) and Z/pZ oϕ Z/4Z, where ϕ is a
nontrivial homomorphism in each case.
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2 Problem 2

Let p be a prime congruent to 1 mod 4. Show that there are exactly five groups
of order 4p up to isomorphism.

Proof. The analysis in the beginning is the same as in Problem 1: when n2 = 1,
we have the groups Z/pZ× Z/4Z and Z/pZ× Z/2Z× Z/2Z.

When n2 = p, we again consider semidirect products. This time, with
H = Z/pZ, Aut(H) ∼= Z/(p− 1)Z has an order of p− 1 which is divisible by 4.
Let Aut(H) = 〈a〉, where a ∈ (Z/pZ)∗. Then 1 ≡ ap−1 ≡ (a(p−1)/4)4 mod p.
Since a is a generator of order exactly p−1, none of a(p−1)/4, a2(p−1)/4, a3(p−1)/4

can be identity. Thus a(p−1)/4 is an element of order 4 in Aut(H). Therefore,
we can form a homormorphism Z/4Z→ Aut(H) which in which a generator of
Z/4Z is sent to an order 4 automorphism, which was not possible in the p ≡ 3
mod 4 case. This gives one extra group for a total of five.
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3 Problem 5.2.7

Let p be prime and let A = 〈x1〉 × ... × 〈xn〉 be an abelian p-group, where
|xi| = pαi > 1 for all i. Let ϕ : A→ A be ϕ(x) = xp.

a) Prove that ϕ is a homomorphism.

Proof. Since A is abelian, (xy)n = xnyn for all x, y ∈ A, n ∈ N. Thus ϕ(xy) =
(xy)p = xpyp = ϕ(x)ϕ(y).

b) Decribe the image and kernel of ϕ in terms of the given generators.

Proof. The kernel of ϕ consists of tuples where each entry is an order p element
in the corresponding cyclic group. The order p elements in 〈xi〉 are generated

by xp
αi−1

i , so kerϕ = 〈xp
α1−1

1 〉 × ...× 〈xpαn−1

n 〉.
Since each generator xi gets mapped to xpi , it follows that imϕ = 〈xp1〉× ...×

〈xpn〉

c) Prove that kerϕ and A/imϕ both have rank n, and furthermore are iso-
morphic to the elementary abelian group of order pn.

Proof. From kerϕ = 〈xp
α1−1

1 〉× ...×〈xpαn−1

n 〉, we clearly see that kerϕ has rank

n, and since there are n generators of order p, consisting of (..., xp
αi−1

i , ...) with
identity elements everywhere except one spot, this is isomorphic to Epn .

From imϕ = 〈xp1〉 × ... × 〈xpn〉, we see that in A/imϕ, each cyclic group is
reduced to order p, since the p powers vanish in the quotient. Explicitly, A/imϕ
is generated by (..., xi, ...)imϕ, where there are identity elements everywhere
except one spot, and since (..., xi, ...)

p = (..., xpi , ...) ∈ imϕ, the generators have
order p. Thus A/imϕ ∼= Epn .
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4 Problem 5.5.6

Let K be cyclic, H a group, and ϕ1, ϕ2 are homomorphisms K → Aut(H) such
that ϕ1(K) and ϕ2(K) are conjugate subgroups of Aut(H). If K is infinite,
assume ϕ1, ϕ2 are injective. Prove by constructing an explicit isomorphism that
H oϕ1

K ∼= H oϕ2
K.

Proof. Suppose σϕ1(K)σ−1 = ϕ2(K), for some σ ∈ Aut(H). Since K is cyclic,
for some a ∈ Z, we have σϕ1(k)σ−1 = ϕ2(k)a for all k ∈ K. Let ψ : Hoϕ1 K →
H oϕ2

K be ψ((h, k)) = (σ(h), ka). We have

ψ((h1, k1)(h2, k2)) = ψ(h1ϕ1(k1)(h2), k1k2)

= (σ(h1)σϕ1(k1)(h2), (k1k2)a) = (σ(h1)ϕ2(k1)aσ(h2), ka1k
a
2)

= (σ(h1)ϕ2(ka1)σ(h2), ka1k
a
2) = (σ(h1), ka1 )(σ(h2), ka2)

= ψ(h1, k1)ψ(h2, k2).

Thus ψ is a homomorphism.
First suppose K is finite. In order for a ∈ Z to preserve the image, we must

have a coprime to |K|, so that x 7→ xa is an automorphism of K. Then a has an
inverse b mod |K|. Let ξ((h, k)) = (σ−1(h), kb). Since ab ≡ 1 mod |K|, kab = k
for all k. Then it is clear that ξ ◦ ψ = ψ ◦ ξ = id, since (ka)b = (kb)a = k.

Now suppose K is infinite. Then the only a which could preserve the image
is a = ±1, so that a2 = 1. It follows that ξ((h, k)) = (σ−1(h), ka) is an inverse

for ψ, since (ka)a = ka
2

= k.
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5 Problem 5.5.8

Construct a non-abelian group of order 75. Classify all groups of order 75.

Proof. We have n3 = 1, 5, 25, but 5 is not 1 mod 3, so n3 = 1 or 25. n5 = 1, 3,
but 3 is not 1 mod 5, so n5 = 1. In particular, a group of order 75 must have
a normal 5-Sylow subgroup. The possible groups of order 25 are Z/2Z5 and
Z/5Z × Z/5Z. In the case that n3 = 1, the groups are Z/3Z × Z/2Z5 and
Z/3Z× Z/5Z× Z/5Z.

If n3 = 25, we must consider semidirect products. Since |Aut(Z/2Z5)| =
φ(25) = 20, with φ the totient function, there is no order 3 automorphism of
Z/2Z5. Therefore, there is no semidirect product which gives a group that is
not isomorphic to one of the previously listed groups.

Let H = Z/5Z × Z/5Z. Since Aut(H) ∼= GL2(Z/5Z), |Aut(H)| = (5 −
1)2(5)(5+1) = 480, so there is an order 3 automorphism. There are 20 (checked
via computer) order 3 automorphisms. The order of 3 in 480 is 1, so the 3-Sylow
subgroups of Aut(H) have order 3. This means that regardless of the choice of
ϕ(1) for a nontrivial homomorphism ϕ : Z/3Z→ Aut(H), the image will always
be conjugate to the image for any other choice. Therefore, by Problem 5.5.6,
there is exactly one Z/3Zoϕ (Z/5Z×Z/5Z) up to isomorphism, where ϕ sends
a generator of Z/3Z to an order 3 automorphism.
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