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1 Problem 1

Let p > 3 be a prime congruent to 3 mod 4. Show that there are exactly four
groups of order 4p up to isomorphism.

Proof. By the Sylow theorems, we have ny =1 or p, and n, =1, since 2,4 # 1
mod p. Thus a group of order 4p has a normal subgroup of order p; this is Z/pZ
up to isomorphism.

If ny = 1, then the group is a direct product of Z/pZ with a group of order
4. There are exactly two groups of order 4 up to isomorphism, namely Z/47Z
and Z /27 x 7./27. So in the case ny = 1, we have the groups Z/pZ x Z /47 and
Z/pZ X 7./27 x 7] 27Z.

If no = p, we must consider semidirect products. Let H = Z/pZ. Then
Aut(H) =2 Z/(p — 1)Z. Since p = 3 mod 4, there are no automorphisms of
order 4. Furthermore, a non trivial image of the groups Z/4Z and Z /27 x 7./ 27
must be an order 2 subgroup in Aut(H) by Lagrange’s theorem. Again, since
p = 3 mod 4, this means that the image will be a 2-Sylow subgroup, which
are all conjugate. By Problem 5.5.6, this means that regardless of the choice
of ¢ : K — Aut(H), where K is either Z/4Z or Z /27 x 7Z./2Z, the semidirect
products will be isomorphic. Thus there are two more groups of order 4p up
to isomorphism, Z/pZ %, (Z/2Z x Z/2Z) and Z/pZ x, Z/AZ, where ¢ is a
nontrivial homomorphism in each case. O



2 Problem 2

Let p be a prime congruent to 1 mod 4. Show that there are exactly five groups
of order 4p up to isomorphism.

Proof. The analysis in the beginning is the same as in Problem 1: when ny =1,
we have the groups Z/pZ x Z/AZ and Z/pZ x Z/2Z x 7./ 27Z.

When ny = p, we again consider semidirect products. This time, with
H =7Z/pZ, Aut(H) 2 Z/(p — 1)Z has an order of p — 1 which is divisible by 4.
Let Aut(H) = (a), where a € (Z/pZ)*. Then 1 = a?~! = (aP~V/%)* mod p.
Since a is a generator of order exactly p— 1, none of a(P=1/4 g2(p=1)/4 g3(p—1)/4
can be identity. Thus a®~1/% is an element of order 4 in Aut(H). Therefore,
we can form a homormorphism Z/4Z — Aut(H) which in which a generator of
Z/AZ is sent to an order 4 automorphism, which was not possible in the p = 3
mod 4 case. This gives one extra group for a total of five. O



3 Problem 5.2.7

Let p be prime and let A = (x1) X ... X (x,) be an abelian p-group, where
|z;| = p* >1for all i. Let ¢ : A — A be ¢(z) = aP.
a) Prove that ¢ is a homomorphism.

Proof. Since A is abelian, (zy)™ = 2™y" for all z,y € A, n € N. Thus ¢(zy) =
(zy)? = aPy? = p(x)p(y). O

b) Decribe the image and kernel of ¢ in terms of the given generators.

Proof. The kernel of ¢ consists of tuples where each entry is an order p element
in the corresponding cyclic group. The order p elements in (z;) are generated
a;—1 ayp—1 an—
by 2" sokerg = (8" ) x .o x (zP™ ).
Since each generator z; gets mapped to z¥, it follows that imp = (2) x ... X
(7)) O

c¢) Prove that ker ¢ and A/imy both have rank n, and furthermore are iso-
morphic to the elementary abelian group of order p™.

Proof. From ker p = (x’l’al_1> X o X (xff"_l>, we clearly see that ker ¢ has rank

n, and since there are n generators of order p, consisting of (..., xf% ' ,...) with
identity elements everywhere except one spot, this is isomorphic to Epn.

From imp = (z) x ... x (zP), we see that in A/imy, each cyclic group is
reduced to order p, since the p powers vanish in the quotient. Explicitly, A/imep
is generated by (...,z;,...)imp, where there are identity elements everywhere
except one spot, and since (..., x;,...)P = (...,a?,...) € imgp, the generators have

order p. Thus A/imp = Epn. O



4 Problem 5.5.6

Let K be cyclic, H a group, and @1, 2 are homomorphisms K — Aut(H) such
that ¢1(K) and 2(K) are conjugate subgroups of Aut(H). If K is infinite,
assume @1, @9 are injective. Prove by constructing an explicit isomorphism that
Hx, K=Hx,, K.

Proof. Suppose o1 (K)ot = p(K), for some o € Aut(H). Since K is cyclic,
for some a € Z, we have oy (k)o™! = po(k)* forall k € K. Let ¢ : H x,, K —
H x,, K be ¥((h,k)) = (o(h), k*). We have

Y((h1, k1) (he, k2)) = Y (hipi(k1)(he), k1kz2)
(( )U<P( 1)(ha), (k1ks)® )=(( 1)p2(k1)"o(he), kTES)
(o(h)p2(k)o(he), kiks) = (o(h1), k) (o (h2), k3)
—¢(h1,k1) (hg,kQ).

Thus 1 is a homomorphism.

First suppose K is finite. In order for a € Z to preserve the image, we must
have a coprime to | K|, so that 2 — z® is an automorphism of K. Then a has an
inverse b mod |K|. Let £((h,k)) = (671 (h), kb). Since ab=1 mod |K|, k? =k
for all k. Then it is clear that & o) = v o £ =id, since (k%)* = (k*)® = k.

Now suppose K is infinite. Then the only a which could preserve the image
is a = £1, so that a®> = 1. It follows that £((h,k)) = (c~1(h), k%) is an inverse
for 1, since (k%)* = k%° = k.

O



5 Problem 5.5.8

Construct a non-abelian group of order 75. Classify all groups of order 75.

Proof. We have ng = 1,5,25, but 5 is not 1 mod 3, so ng =1 or 25. n5 = 1,3,
but 3 is not 1 mod 5, so n5; = 1. In particular, a group of order 75 must have
a normal 5-Sylow subgroup. The possible groups of order 25 are Z/2Z5 and
Z/5Z x Z/5Z. In the case that ng = 1, the groups are Z/3Z x Z/2Z5 and
Z)3Z x Z]5Z x 7/5Z.

If ng = 25, we must consider semidirect products. Since |Aut(Z/2Z5)| =
¢(25) = 20, with ¢ the totient function, there is no order 3 automorphism of
Z/275. Therefore, there is no semidirect product which gives a group that is
not isomorphic to one of the previously listed groups.

Let H = Z/5Z x Z/5Z. Since Aut(H) = GLo(Z/5Z), |Aut(H)| = (5 —
1)2(5)(5+1) = 480, so there is an order 3 automorphism. There are 20 (checked
via computer) order 3 automorphisms. The order of 3 in 480 is 1, so the 3-Sylow
subgroups of Aut(H) have order 3. This means that regardless of the choice of
(1) for a nontrivial homomorphism ¢ : Z/3Z — Aut(H), the image will always
be conjugate to the image for any other choice. Therefore, by Problem 5.5.6,
there is exactly one Z/3Z %, (Z/5Z x Z/5Z) up to isomorphism, where ¢ sends
a generator of Z/3Z to an order 3 automorphism. O



