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1 Problem 1

Let G be a group and let ∆ = {(g, g) | g ∈ G}.
a) Show that ∆ is a subgroup of G×G which is isomorphic to G.

Proof. Let f : G → G × G be f(g) = (g, g). Then f(gh) = (gh, gh) =
(g, g)(h, h) = f(g)f(h), so f is a homomorphism. Since f(G) = ∆, it fol-
lows ∆ is a subgroup of G × G. If f(g) = (e, e), then clearly g = e, showing
that f is injective. Thus f : G→ ∆ is an isomorphism.

b) Show that ∆ is a normal subgroup iff G is abelian.

Proof. We have (h−1
1 , h−1

2 )(g, g)(h1, h2) = (h−1
1 gh1, h

−1
2 gh2). Then h−1

1 gh1 =
h−1
2 gh2 iff h2h

−1
1 g = gh2h

−1
1 . Since h1, h2 are arbitrary, h = h2h

−1
1 is also

arbitrary. Thus ∆ is normal iff hg = gh for all g, h ∈ G, i.e. G is abelian.
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2 Problem 2

a) Suppose that N1, ..., Nk are normal subgroups of G such that G = N1...Nk

and Ni ∩ (N1...Ni−1Ni+1...Nk) = {e} for each i. Show that G ∼= N1 × ...×Nk.

Proof. Let f : N1× ...×Nk → G be f(n1, ..., nk) = n1...nk. Since G = N1...Nk,
this map is surjective. Thus suppose n1...nk = e. For each i, we have n−1

i =
n1...ni−1ni+1...nk. The left hand side belongs to Ni, and the right hand side
belongs to N1...Ni−1Ni+1...Nk. Since Ni ∩ (N1...Ni−1Ni+1...Nk) = {e}, we
must have n−1

i = e, so each ni = e. Thus f is injective, and so f is an
isomorphism.

b) Give an example of a group G and normal subgroups N1, N2, N3 such
that G = N1N2N3 and Ni ∩ Nj = {e} for i 6= j, but G is not isomorphic to
N1 ×N2 ×N3.

Proof. Let G = Z/2Z × Z/2Z = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then there are
three subgroups N1 = {(0, 0), (1, 0)}, N2 = {(0, 0), (0, 1)}, N3 = {(0, 0), (1, 1)}
which are pairwise disjoint. Since G is abelian, each of these subgroups is
normal. G = N1N2N3 since we have (0, 0) = (0, 0) + (0, 0) + (0, 0), (1, 0) =
(1, 0)+(0, 0)+(0, 0), (0, 1) = (0, 0)+(0, 1)+(0, 0), (1, 1) = (0, 0)+(0, 0)+(1, 1).
However, N1 ×N2 ×N3 is a group of order 8, so it is not isomorphic to G.
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3 Problem 3

Let A be abelian and let Â = Hom(A,C∗).
a) Show that Â is a group under pointwise multiplication.

Proof. Let α, β ∈ Â. First we must show that (αβ)(a) = α(a)β(a) is an element
of Â. We have (αβ)(ab) = α(ab)β(ab) = α(a)α(b)β(a)β(b) = α(a)β(a)α(b)β(b) =
(αβ)(a)(αβ)(b), as desired. Clearly, this multiplication is associative since mul-
tiplication in C∗ is associative. We also note that the multiplication in Â is
commutative, since multiplication in C∗ is commutative.

The identity in Â is ε(a) = 1. This is clearly an element of Â since ε(ab) =
1 = ε(a)ε(b). Furthermore, it is identity since (εα)(a) = 1 · α(a) = α(a).

Let α−1 be α−1(a) = (α(a))−1. This is in Â since α−1(ab) = (α(ab))−1 =
(α(a)α(b))−1 = (α(a))−1(α(b))−1 = α−1(a)α−1(b). This is the inverse of α
because α(a)α−1(a) = α(a)(α(a))−1 = 1 = ε(a).

b) If A is cyclic of order n, show that Â is also cyclic of order n.

Proof. Let A = {e, a, ...an−1}. Then given α ∈ Â, α(ak) = (α(a))k, so α is
completely determined by α(a). Furthermore, (α(a))n = α(e) = 1, so α(a) is an
nth root of unity. Each of the n nth roots of unity determine a unique element of
Â, showing that Â is cyclic of order n, having generator α(a) = exp(2πi/n).

c) Show that Â×B ∼= Â× B̂.

Proof. Let f : Â×B̂ → Â×B be f(α, β)(a, b) = α(a)β(b). Then f(αγ, βδ)(a, b) =
(αγ)(a)(βδ)(b) = α(a)γ(a)β(b)δ(b) = α(a)β(b)γ(a)δ(b) = f(α, β)(a, b)f(γ, δ)(a, b),
showing that f is a homomorphism.

If f(α, β)(a, b) = 1 for all (a, b) ∈ A × B, then we consider (a, e) and (e, b),
showing that α(a) = 1 and β(b) = 1 for all a ∈ A and b ∈ B. Thus α and β are
identity in Â and B̂ respectively, showing that f is injective.

Let g ∈ Â×B. Then gA(a) = g(a, e) gives an element of Â; similarly,
gB(b) = g(e, b) gives an element of B̂. We claim f(gA, gB) = g. Indeed,
f(gA, gB)(a, b) = gA(a)gB(b) = g(a, e)g(e, b) = g(ae, eb) = g(a, b), as desired.
Thus f is surjective, showing that f is an isomorphism.

d) Using b) and c), show that A ∼= Â for A finite.

Proof. Since finite abelian groups are isomorphic to direct products of cyclic

groups, say A ∼= ΠnZ/nZ, then Â ∼= ΠnẐ/nZ ∼= ΠnZ/nZ ∼= A.

e) Show that Ẑ ∼= C∗.

Proof. Note that α(n) = (α(1))n. Thus, an element of Ẑ is completely deter-
mined by α(1) ∈ C∗. Furthermore, there is no restriction on α(1). Thus, non-

zero complex number gives rise to an unique element of Ẑ, so that Ẑ ∼= C∗.

f) Show that f : A→ ˆ̂
A given by f(a)(α) = α(a) is a homomorphism.
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Proof. f(ab)(α) = α(ab) = α(a)α(b) = f(a)(α)f(b)(α) = (f(a)f(b))(α).

g) If A is finite, show that f is an isomorphism.

Proof. Since |A| = |Â| = | ˆ̂A|, it suffices to show that f is injective. Suppose
e 6= a ∈ A. Let A = ΠnZ/nZ. a has a non-zero projection into some Z/kZ, say j
mod k. Z/kZ admits a homomorphism ψ sending 1 mod k to exp(2πi/k), which
therefore sends j mod k to exp(2jπi/k) 6= 1. Then we can lift ψ to A given by
taking the identity on every Z/nZ component except for n = k. In other words,
if a is written as (an1

, ...), a is mapped to ψ(aj) 6= 1. Thus f(a)(ψ) 6= 1, so that

f(a) is not the identity in
ˆ̂
A. Therefore, f is injective.
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4 Problem 4

a) Show that there are no simple groups of order 312.

Proof. 312 = 23 · 3 · 13. n13 | 24 and n13 ≡ 1 mod 13, implying that n13 = 1.
Thus any group of order 312 has a normal subgroup of order 13.

b) Show that there are no simple groups of order 56.

Proof. 56 = 23 · 7. n7 | 8 and n7 ≡ 1 mod 7 implies n7 = 1 or 8. If n7 = 1 then
the group is not simple. If n7 = 8, then there are 48 elements of order 7, leaving
8 elements. These must constitute the Sylow subgroup of order 8, implying that
n2 = 1, so the group is not simple.

c) How many elements of order 7 does a simple group of order 168 have?

Proof. 168 = 23 · 3 · 7. n7 | 24 and n7 ≡ 1 mod 7, so n7 = 1 or 8. If n7 = 1,
then the group is not simple. Thus n7 = 8. Then there are 48 elements of order
7.

5



5 Problem 4.5.16

Let |G| = pqr where p, q, r are primes with p < q < r. Prove that G has a
normal Sylow subgroup for either p, q, or r.

Proof. First, nr | pq and nr ≡ 1 mod r, meaning that nr = 1 or nr = pq if
pq ≡ 1 mod r. nr 6= p, q since p, q < r implies p, q 6≡ 1 mod r. If nr = 1,
then there is a normal Sylow r-subgroup. Thus suppose nr = pq, so there are
pq(r − 1) elements of order r.

Now nq | pr and nq ≡ 1 mod q. nq 6= p since p < q implies p 6≡ 1 mod q. If
nq = pr, then there would be pr(q−1) elements of order q. However, since there
are pqr − pq elements of order r and pqr elements in total, then we must have
pr(q − 1) < pq, or r(q − 1) < q. Since r > q > 1, this is impossible. If nq = 1,
then there is a normal Sylow q-subgroup. Thus suppose nq = r, so there are
r(q − 1) elements of order q.

We must have at least p− 1 elements of order p, and the identity of order 1.
Thus pq(r−1)+r(q−1)+(p−1)+1 ≤ pqr. Then 0 ≤ pq−p−qr+r = (p−r)(q−1).
Since p < r and q > 1, this is impossible. Therefore, nq = 1 when nr = pq.
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