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1 Problem 1

Let G be a group and let A ={(g,9) | g € G}.
a) Show that A is a subgroup of G x G which is isomorphic to G.

Proof. Let f : G — G x G be f(g) = (g9,9). Then f(gh) = (gh,gh) =
(9,9)(h,h) = f(g)f(h), so f is a homomorphism. Since f(G) = A, it fol-
lows A is a subgroup of G x G. If f(g) = (e,e), then clearly g = e, showing
that f is injective. Thus f : G — A is an isomorphism. O

b) Show that A is a normal subgroup iff G is abelian.

Proof. We have (hy',hy')(g,9)(h1,he) = (hy*ghi,hy ghs). Then hi'lgh; =
hz_lghz iff hghl_lg = ghghl_l. Since hi,hs are arbitrary, h = hghl_l is also
arbitrary. Thus A is normal iff hg = gh for all g, h € G, i.e. G is abelian. [



2 Problem 2

a) Suppose that Ny, ..., N are normal subgroups of G such that G = N;...Ny,
and N; N (N1...N;—_1N;11...Ny) = {e} for each i. Show that G = Ny X ... x N.

Proof. Let f: Ny X ...x N, = G be f(ni,...,n;) = ny...ng. Since G = Ni...Ny,
this map is surjective. Thus suppose n;...ny = e. For each ¢, we have ni_1 =
Nn1...n;—1Mi+1...nk. The left hand side belongs to N;, and the right hand side
belongs to Nj...N;—_1N;t1...Ng. Since N; N (N1...N;—1N;41..Ni) = {e}, we
must have n;l = ¢, so each n; = e. Thus f is injective, and so f is an
isomorphism. O

b) Give an example of a group G and normal subgroups N, N3, N3 such
that G = N1NoN3 and N; N N; = {e} for i # j, but G is not isomorphic to
N1 X NQ X Ng.

Proof. Let G = Z/2Z x Z/27Z = {(0,0),(1,0),(0,1),(1,1)}. Then there are
three subgroups Ny = {(070) (1 0)} Ny = {(0 0)7(031)}aN3 = {(030)7(171)}
which are pairwise disjoint. Since G is abelian, each of these subgroups is
normal. G = NjN3Nj3 since we have (0,0) = (0,0) + (0,0) + (0,0),(1,0) =
(1,0)+(0,0) +(0,0), (0,1) = (0,0) + (0, 1)+(0 0)( 1) = (0 0)+(0,0) +

(1,1)
However, N1 x Ny x N3 is a group of order 8, so it is not isomorphic to G. [



3 Problem 3

Let A be abelian and let A = Hom(4,C*).
a) Show that A is a group under pointwise multiplication.

Proof. Let o, B € A. First we must show that («3)(a) = a(a)B(a) is an element
of A. We have (a/3)(ab) = a(ab)B(ab) = a(a)a(b)5(a)B(b) = ala)b(a)a(b)5(b)
(af)(a)(aB)(b), as desired. Clearly, this multiplication is associative since mul-
tiplication in C* is associative. We also note that the multiplication in A is
commutative, since multiplication in C* is commutative.

The identity in A is e(a) = 1. This is clearly an element of A since &(ab) =
1 =¢e(a)e(b). Furthermore, it is identity since (ea)(a) =1 - a(a) = a(a).

Let o= be a~!(a) = (a(a))~!. This is in A since a~(ab) = (a(ab))~! =
(a(a)a())™! = (a(a)) Y a(b))™! = a~t(a)a~t(b). This is the inverse of «
because a(a)a~t(a) = a(a)(a(a))™ =1 =¢(a). O

b) If A is cyclic of order n, show that A is also cyclic of order n.

Proof. Let A = {e,a,..a®'}. Then given a € A, a(a*) = (a(a))*, so « is
completely determined by a(a). Furthermore, (a(a))™ = a(e) =1, so a(a) is an
nth root of unity. Each of the n nth roots of unity determine a unique element of
A, showing that A is cyclic of order n, having generator a(a) = exp(2wi/n). O

¢) Show that AxB=AxB

Proof. Let f : AxB — A x Bbe f(a, B)(a,b) = a(a)B(b). Then f(ary, B6)(a,b) =
(a7)(a)(B0)(b) = a(a)v(a)B(b)d(b) = a(a)B(b)v(a)d(b) = f(a; B)(a, b) f(7,6)(a,b),

showing that f is a homomorphism.

If f(a,B)(a,b) =1 for all (a,b) € A x B, then we consider (a,e) and (e, b),
showing that a(a) =1 and S(b) =1 for all a € A and b € B. Thus « and 3 are
identity in A and B respectively, showing that f is injective.

Let g € Ax B. Then ga(a) = g(a,e) gives an clement of A; similarly,
ge(b) = g(e,b) gives an element of B. We claim f(ga,g98) = g. Indeed,

f(ga,g8)(a,b) = ga(a)gs(b) = gla,e)g(e,b) = g(ae,eb) = g(a,b), as desired.
Thus f is surjective, showing that f is an isomorphism. O

d) Using b) and c), show that A2 A for A finite.

Proof. Since finite abelian groups are isomorphic to direct products of cyclic
groups, say A = I1,,Z/nZ, then A I, Z/nZ =1, Z/nZ = A. O

¢) Show that Z = C*.

Proof. Note that a(n) = (a(1))". Thus, an element of Z is completely deter-
mined by (1) € C*. Furthermore, there is no restriction on «(1). Thus, non-
zero complex number gives rise to an unique element of Z, so that Z = C*. [

f) Show that f: A — A given by f(a)(a) = a(a) is a homomorphism.



Proof. f(ab)(a) = a(ab) = a(a)a(b) = f(a)(a) f(b)(e) = (f(a) f())(e). L

g) If A is finite, show that f is an isomorphism.

Proof. Since |A| = |A| = |A|, it suffices to show that f is injective. Suppose
e#a€ A Let A=1,Z/nZ. ahas anon-zero projection into some Z/kZ, say j
mod k. Z/kZ admits a homomorphism 1) sending 1 mod k to exp(2mi/k), which
therefore sends j mod k to exp(2jmi/k) # 1. Then we can lift ¢ to A given by
taking the identity on every Z/nZ component except for n = k. In other words,
if a is written as (an,,...), @ is mapped to ¥ (a;) # 1. Thus f(a)(v) # 1, so that

f(a) is not the identity in A. Therefore, f is injective. O



4 Problem 4

a) Show that there are no simple groups of order 312.

Proof. 312 = 23.3-13. ni3 | 24 and ni3 = 1 mod 13, implying that ny3 = 1.
Thus any group of order 312 has a normal subgroup of order 13. O

b) Show that there are no simple groups of order 56.

Proof. 56 = 23-7. ny | 8 and ny = 1 mod 7 implies n; = 1 or 8. If ny = 1 then
the group is not simple. If n; = 8, then there are 48 elements of order 7, leaving
8 elements. These must constitute the Sylow subgroup of order 8, implying that
ny = 1, so the group is not simple. O

¢) How many elements of order 7 does a simple group of order 168 have?

Proof. 168 = 2%.3.7. ny; |24 and ny = 1 mod 7, s0 ny = 1 or 8. If ny = 1,
then the group is not simple. Thus ny = 8. Then there are 48 elements of order
7. O



5 Problem 4.5.16

Let |G| = pqr where p,q,r are primes with p < ¢ < r. Prove that G has a
normal Sylow subgroup for either p, g, or 7.

Proof. First, n, | pg and n, = 1 mod r, meaning that n, = 1 or n, = pq if
pq = 1 mod r. n, # p,q since p,q < r implies p,q Z 1 mod r. If n, = 1,
then there is a normal Sylow r-subgroup. Thus suppose n, = pg, so there are
pq(r — 1) elements of order 7.

Now nq | pr and ny, = 1 mod ¢. ngy # p since p < g implies p # 1 mod ¢. If
nq = pr, then there would be pr(g—1) elements of order q. However, since there
are pgr — pq elements of order r and pgr elements in total, then we must have
pr(g — 1) < pg, or r(¢g — 1) < g. Since r > ¢ > 1, this is impossible. If n, = 1,
then there is a normal Sylow g-subgroup. Thus suppose n, = 7, so there are
7(q¢ — 1) elements of order q.

We must have at least p — 1 elements of order p, and the identity of order 1.
Thus pg(r—1)+r(g—1)+(p—1)+1 < pgr. Then 0 < pg—p—gr+r = (p—7)(q—1).
Since p < r and g > 1, this is impossible. Therefore, ny, = 1 when n, = pqg. 0O



