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1 Problem 3

If n ≥ 3, is Sn isomorphic to An × S2?

Proof. No. Write S2 = {1,−1}. Then (e,−1) ∈ Z(An×S2), because e ∈ Z(An)
and −1 ∈ Z(S2). That is to say, Z(An × S2) is not trivial, since it contains a
non-identity element. However, Sn for n ≥ 3 has a trivial center: Suppose that
e 6= σ ∈ Sn. Then there exist i 6= j in {1, ..., n} such that σ(i) = j. Consider
k ∈ {1, ..., n} which is neither i nor j; this exists since n ≥ 3. Then let τ = (jk).
στ(i) = σ(i) = j, while τσ(i) = τ(j) = k. Thus στ 6= τσ, showing that an
arbitrary non-identity permutation σ /∈ Z(Sn). Since isomorphic groups have
isomorphic centers, this shows Sn and An × S2 are not isomorphic.
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2 Problem 4

Let G be a group of order n ≡ 2 mod 4 and let θ : G → Sn be the left regular
permutation representation of G.

(a) If g ∈ G has order 2, show that θ(g) is an odd permutation by explicitly
finding the cycle decomposition.

Proof. For any h ∈ G, h 7→ gh and gh 7→ g2h = h. Thus θ(g) is a product of
n/2 disjoint transpositions, corresponding to an element h being switched with
gh. Since n/2 is odd, θ(g) is an odd permutation.

(b) Show that G has a normal subgroup of index 2, so that it is not simple.

Proof. Consider the composition Θ = sgnθ : G→ {±1}. Then from (a) we have
Θ(g) = −1, implying that Θ is surjective. Then ker Θ is a normal subgroup of
index 2, since G/ ker Θ ∼= {±1}.
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3 Problem 4.3.19

Assume HCG, K is a conjugacy class of G contained in H and x ∈ K. Prove that
K is a union of k conjugacy classes of equal size in H, where k = |G : HCG(x)|.
Deduce that a conjugacy class in Sn which consists of even permutations is
either a single conjugacy class under An or is a union of two classes of the same
size in An.

Proof. Let g1HCG(x), ..., gkHCG(x) be the k disjoint cosets of HCG(x) in G.
Let Ci be the H-conjugacy class of gixg

−1
i ∈ K. Clearly Ci ⊂ K. First, we

must show this is independent of the coset representative gi. Let h ∈ H, c ∈
CG(x). Then gihcxc

−1h−1g−1i = h′gixg
−1
i h′−1 ∈ Ci, where h′ = gihg

−1
i ∈ H by

normality of H.
Now suppose there is h ∈ H such that gixg

−1
i = hgjxg

−1
j h−1. Then

g−1i hgj ∈ CG(x), say g−1i hgj = c. Then gic = giec ∈ giHCG(x) and hgj =
gjh
′e ∈ gjHCG(x), where h′ is given by normality of H. Thus gic = hgj is in

two cosets of HGC(x), implying i = j. In particular, this shows that Ci and Cj
for i 6= j are disjoint.

Since each Ci ⊂ K,
⋃k

i=1 Ci ⊂ K. Now let gxg−1 ∈ K. g is in some coset
giHCG(x); let g = gihc for h ∈ H, c ∈ CG(x). Let gih = h′gi by normality of
H. Then gxg−1 = h′gicxc

−1g−1i h′−1 = h′gixg
−1
i h′−1 ∈ Ci. Thus every element

of K belongs to some Ci, so K =
⋃k

i=1 Ci.
In the case of G = Sn, H = An, we have k = |G : HCG(x)| is either 1 or 2,

since An = H ≤ HCG(x), so k ≤ |Sn : An| = 2.
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4 Problem 6

Let C be a Sn conjugacy class contained in An. Let σ be a fixed element in C.
(a) Show that C is a single An conjugacy class iff CSn

(σ) contains an odd
permutation.

Proof. (→) Suppose CSn
(σ) contains only even permutations, i.e. CSn

(σ) ≤ An.
Then AnCSn(σ) = An, meaning that the index |Sn : AnCSn(σ)| = 2, so that C
consists of 2 An conjugacy classes.

(←) If CSn
(σ) contains an odd permutation, then AnCSn

(σ) contains both
An and an odd permutation. Since AnCSn

(σ) is either An or Sn, it must be Sn

since An does not contain odd permutations. Then |Sn : AnCSn
(σ)| = 1, so C

is a single conjugacy class in An.

(b) Show that if the cycle type of σ does not consist of distinct odd integers,
then CSn

(σ) contains an odd permutation.

Proof. First assume the cycle type σ has an even integer. The corresponding
cycle is an odd permutation. Since the cycles in the decomposition of σ are
disjoint, said even length cycle commutes with σ, so that it is contained in
CSn(σ).

Now suppose that the cycle type contains two cycles with the same odd
length k, say (i1...ik), (j1...jk). Let τ = (i1j1)...(ikjk). Then σir = ir+1, σjr =
jr+1, τ ir = jr, τjr = ir, where for notational purposes, ik+1 = i1, jk+1 = j1.
Note that τ leaves every element other than the i, j’s fixed, so we must check that
στ = τσ just on the i, j’s. Indeed, στir = σjr = jr+1 and τσir = τir+1 = jr+1,
and στjr = ir+1 = τσjr. Thus τ ∈ CSn(σ). Since τ is a product of an odd
number of transpositions, it is an odd permutation, showing that CSn

(σ) has
an odd permutation.

(c) If the cycle type of σ consists of distinct odd integers, show that CSn
(σ)

is the subgroup of An generated by the cycles of σ.

Proof. There is a clear containment of the subgroup generated by the cycles,
since each cycle commutes with σ. Thus let τ ∈ CSn

(σ). Suppose the cycles of

σ are denoted by superscript j, and let (ij1...i
j
r) be such a cycle. Let τijk = ij

′

k′ .

Then τσijk = τijk+1 and στijk = σij
′

k′ = ij
′

k′+1. Thus τijk+1 = ij
′

k′+1. Again,

if necessary, the +1 wraps around the end of a cycle; ijr+1 = ij1, for example.

Therefore, we have τij1 = ij
′

1′ , ..., τ i
j
r = ij

′

r′ , and ij
′

r′+1 = ij
′

1′ . In other words, the

ij
′

form a length r cycle under σ. But there is only one such cycle. Therefore,
j′ = j. It follows that each cycle of τ is a power of a cycle in σ, so that τ is
generated by the cycles of σ.
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5 Problem 4.6.4

Prove that An is generated by the set of all 3-cycles for each n ≥ 3.

Proof. Sn is generated by transpositions, and in particular, the transpositions
(12), ..., (1n) generate Sn since a transposition (ij) = (1i)(1j)(1i) for i, j 6= 1,
and the cases where i or j equal 1 are trivial: (i1) = (1i), (11) = id. Thus we
can write a permutation as (1i1) . . . (1ik). If ij = ij+1, then (1ij)(1ij+1) = id,
so we can assume that consecutive i’s are distinct. Then a permutation in An

is expressed as (1i1)...(1i2k). There are then k pairs (1ij)(1ij+1) = (1ij+1ij),
showing that any permutation in An is a product of three-cycles as desired.
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