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1 Problem 1

Let G be a group with subgroups H,K.
(a) Show that the inverse of a bijective G-map is also a G-map.

Proof. Let f : X → Y be a bijective G-map. Let y ∈ Y and let x = f−1(y), so
y = f(x). Then f−1(g · y) = f−1(g · f(x)) = f−1(f(g · x)) = g · x = g · f−1(y),
showing that f−1 is a G-map.

(b) Show that if f : X → Y is a G-map, then for all x ∈ X, Stab(x) ⊂
Stab(f(x)).

Proof. Let g ∈ Stab(x). Then f(x) = f(g · x) = g · f(x), showing that g ∈
Stab(f(x)).

(c) Show that there exists a G-map G/H → G/K iff H is contained in a
conjugate of K.

Proof. (→) Let f : G/H → G/K be a G-map. Let g ∈ G be such that f(H) =
gK. For h ∈ H, gK = f(H) = f(hH) = hf(H) = hgK. Thus for some k ∈ K,
gk = hg, so h = gkg−1. Thus H ⊂ gKg−1.

(←) Suppose H ⊂ gKg−1. Define f : G/H → G/K by f(aH) = agK. This
is well-defined since for any h ∈ H, there is some k ∈ K such that h = gkg−1,
so f(ahH) = ahgK = agkg−1g = agkK = agK = f(aH). Furthermore, it is a
G-map since f(b · aH) = f(baH) = bagK = b · agK = b · f(aH).

(d) Show that G/H and G/K are isomorphic G-sets iff K is a conjugate of
H.

Proof. (→) Since we have a bijective G-map G/H → G/K, we have H is con-
tained in a conjugate of K, or equivalently, K contains a conjugate of H. Since
the inverse is also a G-map G/K → G/H, we have K is contained in a conju-
gate of H. Therefore K contains a conjugate of H, and is also contained in a
conjugate of H. This implies K is a conjugate of H.

(←) Suppose K = gHg−1. Then as in the proof of (c), we have a G-map
f : G/K → G/H defined by f(aK) = agH. Now, H = g−1Kg, so there is
a G-map f ′ : G/H → G/K defined by f ′(aH) = ag−1K. Now, f(f ′(aH)) =
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f(ag−1K) = ag−1gH = aH and f ′(f(aK)) = f ′(agH) = agg−1K = aK, so
f ′ = f−1, implying f is an isomorphism.
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2 Problem 2

Let G be abelian with order pnm, where p is prime and p,m are coprime. Let

P = {a ∈ G | apk

= e for some k ≥ 0}. Prove the following:
(a) P ≤ G.

Proof. Clearly e ∈ P since ep
0

= e. Let a, b ∈ P such that ap
k

= e, bp
l

= e.

Since G is abelian, (ab)r = arbr for any r. Thus (ab)p
k+l

= ap
kpl

bp
kpl

= e, so

ab ∈ P . (a−1)p
k

= (ap
k

)−1 = e, so a−1 ∈ P . Thus P ≤ G.

(b) G/P has no elements of order p.

Proof. If xP is an element of order p, then xp ∈ P . Then for some k ≥ 0,

(xp)p
k

= e. But (xp)p
k

= xpk+1

, which shows x ∈ P , so that xP is the identity
in G/P , which has order 1.

(c) |P | = pn.

Proof. By Cauchy’s theorem, if p divided |G/P |, then there would be an element
of order p. Therefore, |G/P | = |G|/|P | has no factor of p, implying that P has
a factor of pn, since |G| = pnm and m has no factor of p. If |P | had a prime
factor q 6= p, then there would be an element a ∈ P of order q. But for some

k ≥ 0, ap
k

= e, which means |a| = q divides pk. The only prime dividing pk

is p, meaning that q = p. Therefore, |P | has no prime factor other than p.
Furthermore, since the highest power of p dividing |G| is pn, P cannot be larger
than pn. Thus |P | = pn.

(d) P is the unique subgroup of order pn.

Proof. Let P ′ be a subgroup of order pn. Then the order of every element in P ′

divides pn, meaning that every element in P ′ has an order pk for 0 ≤ k ≤ n. It
follows that P ′ ⊂ P , since by definition, P consists of all elements with order
pk for some k ≥ 0. But |P ′| = |P |, so P ′ = P .
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3 Problem 3

Let G = GL2(Z/pZ), where p is prime. Consider the action of G on (Z/pZ)2.
(a) Show that G acts transitively on X = (Z/pZ)2 − {(0, 0)}.

Proof. Let (w, x), (y, z) ∈ X. We consider cases.

Case 1: w 6= 0, x = 0. Then

(
a b
c d

)(
w
0

)
=

(
aw
cw

)
, so we let a = w−1y, c =

w−1z. y, z are not both zero. If y 6= 0, let b = 0, d = 1, so that the determinant
is w−1y 6= 0. Otherwise, if z 6= 0, let d = 0, b = 1, so the determinant is
−w−1z 6= 0.

Case 2: w = 0, x 6= 0. Then

(
a b
c d

)(
0
x

)
=

(
bx
dx

)
, so we let b = x−1y, d =

x−1z. Again, y, z are not both zero. If y 6= 0, let c = 1, a = 0 so the determinant
is −x−1y 6= 0. Otherwise, if z 6= 0, let a = 1, c = 0, so the determinant is
x−1z 6= 0.

Case 3: w 6= 0, x 6= 0. We consider three subcases.
Subcase 1: y 6= 0, z 6= 0. We let a = w−1y, d = x−1z, b = c = 0. The

determinant is w−1x−1yz 6= 0.
Subcase 2: y = 0, z 6= 0. We must have aw + bx = 0, so let b = 1 so that

a = −w−1x. Then let d = 0, so c = w−1z and the determinant is −w−1z 6= 0.
Subcase 3: y 6= 0, z = 0. We must have cw + dx = 0, so let d = 1 so that

c = −w−1x. Then let b = 0, so a = w−1y and the determinant is w−1y 6= 0.

(b) Compute Stab(1, 0).

Proof. Suppose

(
a b
c d

)(
1
0

)
=

(
a
c

)
=

(
1
0

)
. Then a = 1, c = 0. The determi-

nant of the matrix is then d, so in order for it to be invertible, we must have

d 6= 0. Thus Stab(1, 0) = {
(

1 b
0 d

)
, d 6= 0}.

(c) What is |G|?

Proof. Since G acts transitively, the orbit of (1, 0) is X. |X| = p2 − 1, since
(Z/pZ)2 has p2 elements, since there are p choices for each entry and we subtract
one for (0, 0). The stabilizer of (1, 0) has a size p(p−1), since there are p choices
for b and p− 1 choices for d, since d 6= 0. Thus by the orbit-stabilizer theorem,
we have |G| = p(p− 1)(p2 − 1).
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4 Problem 3.3.3

If H CG of prime index p, then for all K ≤ G, either K ≤ H or G = HK and
|K : K ∩H| = p.

Proof. Suppose K is not a subgroup of H. Since H is normal, HK ≤ G.
Furthermore, since there exists some element x ∈ K which is not in H, HK
also contains x since x = ex is a product of an element of H and an element
of K. But H ⊂ HK since any h ∈ H can be expressed as he, a product of
an element of H and an element of K. Therefore, HK is a subgroup of G
strictly containing H. Then |G : HK| divides, and is less than, p, meaning
|G : HK| = 1, meaning that HK = G.
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5 Problem 4.1.9

Assume G acts transitively on the finite set A and let HCG. Let O1,O2, ...,Or

be the distinct orbits of H on A.
(a) Prove that G permutes the sets Oi in the sense that for each g ∈ G and

i = 1, ..., r, gOi = Oj for some j. Furthermore, show that G is transitive on the
sets Oi. Deduce that the Oi all have the same cardinality.

Proof. Let xi be a representative for the orbit Oi, so that any x ∈ Oi is equal to
h ·xi for some h ∈ H. Then g ·x = g · (h ·xi) = (gh) ·xi = (h′g) ·xi = h′ · (g ·xi),
where gh = h′g for some h′ ∈ H follows from normality of H. Thus the action
of g on an element of Oi is in the orbit of g · xi under H, so G permutes the
orbits.

Since G acts transitively on A, given an orbit Oi with representative xi and
any other orbit Oj with representative xj , there is a g ∈ G such that g ·xi = xj ,
so that g sends the orbit Oi to the orbit Oj .

Since for each i there is gi such that giO1 = Oi, and since |giO1| = |O1|, it
follows that all the orbits have the same cardinality.

(b) Prove that if a ∈ O1, then |O1| = |H : H ∩Ga| and prove that r = |G :
HGa|.

Proof. H ∩ Ga consists of those h ∈ H which stabilize a. Thus, by the orbit
stabilizer theorem for the action of H on A, |O1| = |H : H ∩Ga|.

Now we consider the transitive action of G on the orbits. By the orbit-
stabilizer theorem, r is equal to the index in G of the stabilizer of some orbit,
say O1. Let gO1 = O1. Then g · a = h · a for h ∈ H. Thus if g fixes O1 ,
h−1g ∈ Ga for some h ∈ H. Thus g ∈ HGa. Conversely, if g ∈ HGa, say
g = hk for h ∈ H, k ∈ Ga, then gO1 is the orbit of g · a = (hk) · a = h · a, which
is in the orbit of a. Thus HGa is exactly the subgroup which fixes O1, showing
that r = |G : HGa|.
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