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1 Problem 1

Let G be a group with subgroups H, K.
(a) Show that the inverse of a bijective G-map is also a G-map.

Proof. Let f: X — Y be a bijective G-map. Let y € Y and let z = f~1(y), so

y=f(x). Then f~H(g-y)=[f""g fx)) = (flg-2)=g-2=9g ['(y),
showing that f~! is a G-map. O

(b) Show that if f : X — Y is a G-map, then for all z € X, Stab(x) C
Stab(f(z)).

Proof. Let g € Stab(x). Then f(x) = f(9-z) = g- f(x), showing that g €
Stab(f(x)). O

(c¢) Show that there exists a G-map G/H — G/K iff H is contained in a
conjugate of K.

Proof. (=) Let f:G/H — G/K be a G-map. Let g € G be such that f(H) =
gK. For he H, gK = f(H) = f(hH) = hf(H) = hgK. Thus for some k € K,
gk = hg, so h=gkg~!. Thus H C gKg~".

(+) Suppose H C gKg~!. Define f: G/H — G/K by f(aH) = agK. This
is well-defined since for any h € H, there is some k € K such that h = gkg™!,
so f(ahH) = ahgK = agkg™'g = agkK = agK = f(aH). Furthermore, it is a
G-map since f(b-aH) = f(baH) =bagK =b-agK =b- f(aH). O

(d) Show that G/H and G/K are isomorphic G-sets iff K is a conjugate of
H.

Proof. (—) Since we have a bijective G-map G/H — G/K, we have H is con-
tained in a conjugate of K, or equivalently, K contains a conjugate of H. Since
the inverse is also a G-map G/K — G/H, we have K is contained in a conju-
gate of H. Therefore K contains a conjugate of H, and is also contained in a
conjugate of H. This implies K is a conjugate of H.

(+) Suppose K = gHg~!'. Then as in the proof of (c), we have a G-map
f: G/K — G/H defined by f(aK) = agH. Now, H = g~'Kg, so there is
a G-map f' : G/H — G/K defined by f'(aH) = ag~'K. Now, f(f'(aH)) =



flag™'K) = ag~'gH = aH and f'(f(aK)) = f'(agH) = agg™'K = aK, so
= f_l7 implying f is an isomorphism. 0



2 Problem 2

Let G be abelian with order p™m, where p is prime and p, m are coprime. Let
P={acqG| a?" = e for some k > 0}. Prove the following:
(a) P <@G.

Proof. Clearly e € P since e?’ = e. Let a,b € P such that a?’ = e,bpl =e.
Since G is abelian, (ab)" = a"b" for any r. Thus (ab)?"" = a?"P'bP"'?" = ¢, s0
abe P. (a=1)?" = (a?")"' =¢,s0a"! € P. Thus P < G. O

(b) G/P has no elements of order p.

Proof. If xP is an element of order p, then P € P. Then for some k& > 0,
(zP)?" = e. But (a?)?" = 2P"""| which shows z € P, so that 2P is the identity
in G/ P, which has order 1. O

() |P|=p™.

Proof. By Cauchy’s theorem, if p divided |G/ P|, then there would be an element
of order p. Therefore, |G/P| = |G|/|P| has no factor of p, implying that P has
a factor of p", since |G| = p™m and m has no factor of p. If |P| had a prime
factor g # p, then there would be an element a € P of order q. But for some
k>0, a?’ = e, which means |a| = ¢ divides p*. The only prime dividing p*
is p, meaning that ¢ = p. Therefore, |P| has no prime factor other than p.
Furthermore, since the highest power of p dividing |G| is p™, P cannot be larger
than p™. Thus |P| = p". O

(d) P is the unique subgroup of order p™.

Proof. Let P’ be a subgroup of order p™. Then the order of every element in P’
divides p™, meaning that every element in P’ has an order pF for 0 <k <mn. It
follows that P’ C P, since by definition, P consists of all elements with order
pF for some k > 0. But |P| = |P|, so P’ = P. O



3 Problem 3

Let G = GL3(Z/pZ), where p is prime. Consider the action of G on (Z/pZ)*.
(a) Show that G acts transitively on X = (Z/pZ)* — {(0,0)}.

Proof. Let (w,z), (y,z) € X. We consider cases.

) . a b\ (w) [aw T
Case 1: w # 0,2 = 0. Then (c d) <0>_<cw),soweleta—w Y, C=
w™lz. y, z are not both zero. If y # 0, let b= 0,d = 1 so that the determinant

is w™ly # 0. Otherwise, if 2 # 0, let d = 0,b = o the determinant is
—w Ttz £0.
S a b\ (0 x o _
Case 2: w =0,z # 0. Then (C d) (x) z) sowelet b=x""y,d=
1z Agam y, z are not both zero. If y £ 0, let ¢ = 1, a = 0 so the determinant
is —x Ly £ 0. Otherwise, if z # 0, let @ = 1,c¢ = 0, so the determinant is
Lz #£0.

Case 3: w # 0,x # 0. We consider three subcases.

Subcase 1: y # 0,z # 0. Welet a = wly,d = 27'2,b = ¢ = 0. The
determinant is w—'z~yz # 0.

Subcase 2: y = 0,z # 0. We must have aw + bz = 0, so let b = 1 so that
a=—w 'z. Then let d =0, so ¢ = w™ 'z and the determinant is —w ™'z # 0.

Subcase 3: y # 0,z = 0. We must have cw + dx = 0, so let d = 1 so that
c=—w"lz. Thenlet b =0, so a = w~ 'y and the determinant is w=ty #0. O

(b) Compute Stab(1,0).

a b\ (1 a 1 .
Proof. Suppose (c d) (0> = (c) = (0) Then a = 1,¢ = 0. The determi-

nant of the matrix is then d, so in order for it to be invertible, we must have

d #0. Thus Stab(1,0) — {((1) Z) .d £ 0. O

(¢) What is |G|?

Proof. Since G acts transitively, the orbit of (1,0) is X. |X| = p? — 1, since
(Z/pZ)? has p? elements, since there are p choices for each entry and we subtract
one for (0,0). The stabilizer of (1,0) has a size p(p— 1), since there are p choices
for b and p — 1 choices for d, since d # 0. Thus by the orbit-stabilizer theorem,
we have |G| = p(p — 1)(p? — 1). O



4 Problem 3.3.3

If H < G of prime index p, then for all K < G, either K < H or G = HK and
|[K: KNH|=p.

Proof. Suppose K is not a subgroup of H. Since H is normal, HK < G.
Furthermore, since there exists some element x € K which is not in H, HK
also contains x since x = ex is a product of an element of H and an element
of K. But H C HK since any h € H can be expressed as he, a product of
an element of H and an element of K. Therefore, HK is a subgroup of G
strictly containing H. Then |G : HK]| divides, and is less than, p, meaning
|G : HK| = 1, meaning that HK = G. O



5 Problem 4.1.9

Assume G acts transitively on the finite set A and let H <G. Let O1, s, ..., O,
be the distinct orbits of H on A.

(a) Prove that G permutes the sets O, in the sense that for each g € G and
i=1,..,7, g0; = O; for some j. Furthermore, show that G is transitive on the
sets O;. Deduce that the O; all have the same cardinality.

Proof. Let z; be a representative for the orbit O;, so that any = € O; is equal to
h-z; for some h € H. Theng-z =g-(h-z;) = (gh)-x; = (W'g) -z, =W - (g-x;),
where gh = h/g for some h' € H follows from normality of H. Thus the action
of g on an element of O; is in the orbit of g - x; under H, so G permutes the
orbits.

Since G acts transitively on A, given an orbit O; with representative z; and
any other orbit O; with representative z;, there is a g € G such that g-z; = z;,
so that g sends the orbit O; to the orbit O;.

Since for each i there is g; such that ¢;0; = O;, and since |g;0;| = |O4], it
follows that all the orbits have the same cardinality. O

(b) Prove that if a € Oy, then |O1]| = |H : H N G,| and prove that r = |G :
HG,|.

Proof. HN G, consists of those h € H which stabilize a. Thus, by the orbit
stabilizer theorem for the action of H on A, |O1| = |H : HNG,|.

Now we consider the transitive action of G on the orbits. By the orbit-
stabilizer theorem, r is equal to the index in G of the stabilizer of some orbit,
say O;. Let gO; = O1. Then g-a = h-a for h € H. Thus if g fixes Oy ,
h='g € G, for some h € H. Thus g € HG,. Conversely, if ¢ € HG,, say
g =hk for h € H k € G,, then gO; is the orbit of g-a = (hk) - a = h - a, which
is in the orbit of a. Thus HG, is exactly the subgroup which fixes 01, showing
that r = |G : HG,|. O



