MATH 7210 Homework 3

Andrea Bourque

September 2021

1 Problem 1

Let G be a group with subgroups H, K.

(a) Show that the inverse of a bijective G-map is also a G-map.

Proof. Let $f: X \to Y$ be a bijective *G*-map. Let $y \in Y$ and let $x = f^{-1}(y)$, so y = f(x). Then $f^{-1}(g \cdot y) = f^{-1}(g \cdot f(x)) = f^{-1}(f(g \cdot x)) = g \cdot x = g \cdot f^{-1}(y)$, showing that f^{-1} is a *G*-map.

(b) Show that if $f: X \to Y$ is a *G*-map, then for all $x \in X$, $\operatorname{Stab}(x) \subset \operatorname{Stab}(f(x))$.

Proof. Let $g \in \text{Stab}(x)$. Then $f(x) = f(g \cdot x) = g \cdot f(x)$, showing that $g \in \text{Stab}(f(x))$.

(c) Show that there exists a G-map $G/H \to G/K$ iff H is contained in a conjugate of K.

Proof. (\rightarrow) Let $f: G/H \rightarrow G/K$ be a *G*-map. Let $g \in G$ be such that f(H) = gK. For $h \in H$, gK = f(H) = f(hH) = hf(H) = hgK. Thus for some $k \in K$, gk = hg, so $h = gkg^{-1}$. Thus $H \subset gKg^{-1}$.

 $(\leftarrow) \text{ Suppose } H \subset gKg^{-1}. \text{ Define } f: G/H \to G/K \text{ by } f(aH) = agK. \text{ This is well-defined since for any } h \in H, \text{ there is some } k \in K \text{ such that } h = gkg^{-1}, \text{ so } f(ahH) = ahgK = agkg^{-1}g = agkK = agK = f(aH). \text{ Furthermore, it is a } G\text{-map since } f(b \cdot aH) = f(baH) = bagK = b \cdot agK = b \cdot f(aH). \square$

(d) Show that G/H and G/K are isomorphic G-sets iff K is a conjugate of H.

Proof. (\rightarrow) Since we have a bijective *G*-map $G/H \rightarrow G/K$, we have *H* is contained in a conjugate of *K*, or equivalently, *K* contains a conjugate of *H*. Since the inverse is also a *G*-map $G/K \rightarrow G/H$, we have *K* is contained in a conjugate of *H*. Therefore *K* contains a conjugate of *H*, and is also contained in a conjugate of *H*. This implies *K* is a conjugate of *H*.

 (\leftarrow) Suppose $K = gHg^{-1}$. Then as in the proof of (c), we have a *G*-map $f : G/K \to G/H$ defined by f(aK) = agH. Now, $H = g^{-1}Kg$, so there is a *G*-map $f' : G/H \to G/K$ defined by $f'(aH) = ag^{-1}K$. Now, f(f'(aH)) =

 $f(ag^{-1}K) = ag^{-1}gH = aH$ and $f'(f(aK)) = f'(agH) = agg^{-1}K = aK$, so $f' = f^{-1}$, implying f is an isomorphism.

2 Problem 2

Let G be abelian with order $p^n m$, where p is prime and p, m are coprime. Let $P = \{a \in G \mid a^{p^k} = e \text{ for some } k \ge 0\}$. Prove the following: (a) $P \le G$.

Proof. Clearly $e \in P$ since $e^{p^0} = e$. Let $a, b \in P$ such that $a^{p^k} = e, b^{p^l} = e$. Since G is abelian, $(ab)^r = a^r b^r$ for any r. Thus $(ab)^{p^{k+l}} = a^{p^k p^l} b^{p^k p^l} = e$, so $ab \in P$. $(a^{-1})^{p^k} = (a^{p^k})^{-1} = e$, so $a^{-1} \in P$. Thus $P \leq G$. \Box

(b) G/P has no elements of order p.

Proof. If xP is an element of order p, then $x^p \in P$. Then for some $k \geq 0$, $(x^p)^{p^k} = e$. But $(x^p)^{p^k} = x^{p^{k+1}}$, which shows $x \in P$, so that xP is the identity in G/P, which has order 1.

(c) $|P| = p^n$.

Proof. By Cauchy's theorem, if p divided |G/P|, then there would be an element of order p. Therefore, |G/P| = |G|/|P| has no factor of p, implying that P has a factor of p^n , since $|G| = p^n m$ and m has no factor of p. If |P| had a prime factor $q \neq p$, then there would be an element $a \in P$ of order q. But for some $k \geq 0$, $a^{p^k} = e$, which means |a| = q divides p^k . The only prime dividing p^k is p, meaning that q = p. Therefore, |P| has no prime factor other than p. Furthermore, since the highest power of p dividing |G| is p^n , P cannot be larger than p^n . Thus $|P| = p^n$.

(d) P is the unique subgroup of order p^n .

Proof. Let P' be a subgroup of order p^n . Then the order of every element in P' divides p^n , meaning that every element in P' has an order p^k for $0 \le k \le n$. It follows that $P' \subset P$, since by definition, P consists of *all* elements with order p^k for some $k \ge 0$. But |P'| = |P|, so P' = P.

3 Problem 3

Let $G = GL_2(\mathbb{Z}/p\mathbb{Z})$, where p is prime. Consider the action of G on $(\mathbb{Z}/p\mathbb{Z})^2$. (a) Show that G acts transitively on $X = (\mathbb{Z}/p\mathbb{Z})^2 - \{(0,0)\}$.

Proof. Let $(w, x), (y, z) \in X$. We consider cases.

Case 1: $w \neq 0, x = 0$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w \\ 0 \end{pmatrix} = \begin{pmatrix} aw \\ cw \end{pmatrix}$, so we let $a = w^{-1}y, c = w^{-1}z$. y, z are not both zero. If $y \neq 0$, let b = 0, d = 1, so that the determinant is $w^{-1}y \neq 0$. Otherwise, if $z \neq 0$, let d = 0, b = 1, so the determinant is

 $-w^{-1}z \neq 0.$ Case 2: $w = 0, x \neq 0.$ Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} bx \\ dx \end{pmatrix}$, so we let $b = x^{-1}y, d = x^{-1}z$. Again, y, z are not both zero. If $y \neq 0$, let c = 1, a = 0 so the determinant is $-x^{-1}y \neq 0$. Otherwise, if $z \neq 0$, let a = 1, c = 0, so the determinant is $x^{-1}z \neq 0.$

Case 3: $w \neq 0, x \neq 0$. We consider three subcases.

Subcase 1: $y \neq 0, z \neq 0$. We let $a = w^{-1}y, d = x^{-1}z, b = c = 0$. The determinant is $w^{-1}x^{-1}yz \neq 0$.

Subcase 2: $y = 0, z \neq 0$. We must have aw + bx = 0, so let b = 1 so that $a = -w^{-1}x$. Then let d = 0, so $c = w^{-1}z$ and the determinant is $-w^{-1}z \neq 0$. Subcase 3: $y \neq 0, z = 0$. We must have cw + dx = 0, so let d = 1 so that

 $c = -w^{-1}x$. Then let b = 0, so $a = w^{-1}y$ and the determinant is $w^{-1}y \neq 0$. \Box

(b) Compute Stab(1, 0).

Proof. Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then a = 1, c = 0. The determinant of the matrix is then d, so in order for it to be invertible, we must have $d \neq 0$. Thus $\operatorname{Stab}(1,0) = \{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix}, d \neq 0 \}$.

(c) What is |G|?

Proof. Since G acts transitively, the orbit of (1,0) is X. $|X| = p^2 - 1$, since $(\mathbb{Z}/p\mathbb{Z})^2$ has p^2 elements, since there are p choices for each entry and we subtract one for (0,0). The stabilizer of (1,0) has a size p(p-1), since there are p choices for b and p-1 choices for d, since $d \neq 0$. Thus by the orbit-stabilizer theorem, we have $|G| = p(p-1)(p^2-1)$.

4 Problem 3.3.3

If $H \lhd G$ of prime index p, then for all $K \leq G$, either $K \leq H$ or G = HK and $|K: K \cap H| = p$.

Proof. Suppose K is not a subgroup of H. Since H is normal, $HK \leq G$. Furthermore, since there exists some element $x \in K$ which is not in H, HK also contains x since x = ex is a product of an element of H and an element of K. But $H \subset HK$ since any $h \in H$ can be expressed as he, a product of an element of H and an element of K. Therefore, HK is a subgroup of G strictly containing H. Then |G: HK| divides, and is less than, p, meaning |G: HK| = 1, meaning that HK = G.

5 Problem 4.1.9

Assume G acts transitively on the finite set A and let $H \triangleleft G$. Let $\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_r$ be the distinct orbits of H on A.

(a) Prove that G permutes the sets \mathcal{O}_i in the sense that for each $g \in G$ and $i = 1, ..., r, g\mathcal{O}_i = \mathcal{O}_j$ for some j. Furthermore, show that G is transitive on the sets \mathcal{O}_i . Deduce that the \mathcal{O}_i all have the same cardinality.

Proof. Let x_i be a representative for the orbit \mathcal{O}_i , so that any $x \in \mathcal{O}_i$ is equal to $h \cdot x_i$ for some $h \in H$. Then $g \cdot x = g \cdot (h \cdot x_i) = (gh) \cdot x_i = (h'g) \cdot x_i = h' \cdot (g \cdot x_i)$, where gh = h'g for some $h' \in H$ follows from normality of H. Thus the action of g on an element of \mathcal{O}_i is in the orbit of $g \cdot x_i$ under H, so G permutes the orbits.

Since G acts transitively on A, given an orbit \mathcal{O}_i with representative x_i and any other orbit \mathcal{O}_j with representative x_j , there is a $g \in G$ such that $g \cdot x_i = x_j$, so that g sends the orbit \mathcal{O}_i to the orbit \mathcal{O}_j .

Since for each *i* there is g_i such that $g_i \mathcal{O}_1 = \mathcal{O}_i$, and since $|g_i \mathcal{O}_1| = |\mathcal{O}_1|$, it follows that all the orbits have the same cardinality. \Box

(b) Prove that if $a \in \mathcal{O}_1$, then $|\mathcal{O}_1| = |H : H \cap G_a|$ and prove that $r = |G : HG_a|$.

Proof. $H \cap G_a$ consists of those $h \in H$ which stabilize a. Thus, by the orbit stabilizer theorem for the action of H on A, $|\mathcal{O}_1| = |H : H \cap G_a|$.

Now we consider the transitive action of G on the orbits. By the orbitstabilizer theorem, r is equal to the index in G of the stabilizer of some orbit, say \mathcal{O}_1 . Let $g\mathcal{O}_1 = \mathcal{O}_1$. Then $g \cdot a = h \cdot a$ for $h \in H$. Thus if g fixes \mathcal{O}_1 , $h^{-1}g \in G_a$ for some $h \in H$. Thus $g \in HG_a$. Conversely, if $g \in HG_a$, say g = hk for $h \in H, k \in G_a$, then $g\mathcal{O}_1$ is the orbit of $g \cdot a = (hk) \cdot a = h \cdot a$, which is in the orbit of a. Thus HG_a is exactly the subgroup which fixes \mathcal{O}_1 , showing that $r = |G: HG_a|$.