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1 Problem 1

Let φ : G→ H be a group homomorphism.
(a) Show that |φ(a)| divides |a| for all a ∈ G of finite order.

Proof. We have (φ(a))|a| = φ(a|a|) by the homomorphism property. Since a|a| =
e = idG, we have (φ(a))|a| = φ(e) = e′ = idH . The result follows now from the
general fact that xn = e implies |x| divdes n.

(b) If φ is an isomorphism, show that |φ(a)| = |a| for all a ∈ G.

Proof. First assume a has finite order. From (a), we have |φ(a)| ≤ |a|. Let
ψ = φ−1 and let b = φ(a). Since b has finite order, we then apply (a) with ψ to
show that |ψ(b)| divides |b|. But ψ(b) = a by definition. Thus |a| ≤ |φ(a)|, so
we have |a| = |φ(a)|.

Now assume a has infinite order. If φ(a) has finite order n, then (φ(a))n =
φ(an) = e′ = idH . But since φ is an isomorphism, we must have an = e = idG.
This is a contradiction, so φ(a) has infinite order as well.

Thus |a| = |φ(a)| for all a ∈ G.
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2 Problem 2

Let G be a group.
(a) If a ∈ G, show that there is a unique homomorphism f : Z → G such

that f(1) = a.

Proof. For 0 < n ∈ Z, f(n) = f(1 + ...+ 1) = (f(1))n = an, where 1 + ...+ 1 is a
sum of 1 with itself, n times, and then the homomorphism property of f is used.
f(0) = e = idG, since homomorphisms preserve identity. Finally, if 0 > n ∈ Z,
then n = −k for 0 < k ∈ Z, so f(n) = f(−k) = (f(k))−1 = (ak)−1 = a−k =
an, since homomorphisms preserve inverses. Thus, we see that for all n ∈ Z,
f(n) = an. That is, f is uniquely determined by its value at 1.

(b) When is there a homomorphism h : Z/nZ→ G?

Proof. Let a = h(1). Then an = (h(1))n = h(1 + ... + 1) = f(0) = e = idG,
where we have used the homomorphism property, then the fact that 1+...+1 =
0 in Z/nZ, and then that homomorphisms preserve identity. Also, note that if
a = h(1), then we can see h(k) = ak for k = 0, 1, ..., n− 1, in a manner which is
the same as in the proof of (a). Thus the value of h(1) uniquely determines h.
Since we have seen that (h(1))n = e, we have a homomorphism h : Z/nZ → G
exactly when h(1) has an order which divides n.

(c) Show that if a, n are coprime, the homomorphism h : Z/nZ→ Z/nZ with
h(1) = a is an isomorphism. Use this to conclude that Aut(Z/nZ) is isomorphic
to the group (Z/nZ)∗.

Proof. By the results of (b), any a ∈ Z/nZ gives rise to a homomorphism
h : Z/nZ → Z/nZ, since the order of Z/nZ is n, so any element has an order
which divides n. We now show that if a, n are coprime, |a| = n. Suppose, to
the contrary, that |a| = m < n. That is, m|n and ma ≡ 0 mod n. Since a, n
are coprime, a has an inverse mod n, so multiplying by the inverse gives m ≡ 0
mod n. Since m < n, this would imply m = 0, which is not a valid order. Thus
m = n as desired. Since |a| = n, the set {0, a, ..., (n− 1)a} consists of n distinct
elements in Z/nZ, meaning that this set is equal to all of Z/nZ. But if h(1) = a,
then h(k) = ka for k = 0, 1, ..., n − 1, from h being a homomorphism. Thus h
is surjective, and furthermore h is injective since the only element mapping to
0 is 0. Thus h is an isomorphism.

We have now seen that each a ∈ (Z/nZ)∗ gives an automorphism of Z/nZ.
We must then show that this association is an isomorphism. First, given two
a, b which are coprime to n, let ha, hb be the associated automorphisms. ab
is coprime to n (if a prime divides n and ab, it would also divide either a
or b), so there is an associated automorphism hab which sends 1 to ab. But
the composition ha ◦ hb satisfies ha(hb(1)) = ha(b) = ab = ab, so hab = ha ◦ hb,
showing that the association is a homomorphism. Now suppose ha is the identity
automorphism. It must send 1 to 1 to be the identity, but by definition it sends 1
to a. Then a = 1, so the association is injective. Now let h be any automorphism
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of Z/nZ and let h(1) = a. If a, n were not coprime, say 1 < d = gcd(a, n), then
0 < m = n/d < n would satisfy ma ≡ 0 mod n. In otherwords, ma = 0. But
h(m) = ma = 0 implies m = 0, since h is an automorphism. This contradicts
0 < m < n, so a, n are coprime. Then h = ha for a ∈ (Z/nZ)∗, showing that
the association is surjective.
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3 Problem 3

Let G be a group. Let Z(G) be the center.
(a) Show that Z(G) is a subgroup of G, and any subgroup of Z(G) is normal

in G.

Proof. Clearly idG = e ∈ Z(G), since for all g ∈ G, eg = ge = g. Let a, b ∈
Z(G). Then for any g ∈ G, abg = agb = gab, using the fact that a, b commute
with g. For a ∈ Z(G) and g ∈ G, ag = ga implies ga−1 = a−1g. Since g is
arbitrary, this shows a−1 ∈ Z(G). Thus Z(G) is a subgroup.

Now let H be a subgroup of Z(G). For any h ∈ H, g ∈ G, we have ghg−1 =
hgg−1 = he = h, since h ∈ Z(G) commutes with g. Thus H is normal.

(b) Show that if G/Z(G) is cyclic, then G is abelian. Is it true that G is
abelian if G/Z(G) is abelian?

Proof. Let a ∈ G be such that aZ(g) is a generator for G/Z(G). Then any
g ∈ G equals akb for some k ∈ Z, b ∈ Z(G). But for k1, k2 ∈ Z, b1, b2 ∈ Z(G),
we have ak1b1a

k2b2 = ak1ak2b1b2 = ak2ak1b2b1 = ak2b2a
k1b1, where we have

used the fact that b1, b2 commute with any group element, and the fact that a
group element a commutes with itself so ak1ak2 = ak1+k2 = ak2ak1 . Thus G is
abelian.

It is not true that G is abelian if G/Z(G) is abelian. Consider the group
G = {1,−1, i,−i, j,−j, k,−k} of quaternions. G is not abelian since ij = k 6=
−k = ji. The center is {1,−1}. The group G/Z(G) can then be written as
{1, i, j, k}. Notice that G/Z(G) is abelian, since for example, ij = ij = k, and
ji = ji = −k = k, since 1,−1 are identified in the quotient. Thus, this serves
as an example where G/Z(G) is abelian, while G is not.

(c) Let p, q be prime numbers. If G is a group of order pq, show that either
G is abelian or Z(G) = {e}.

Proof. The possible orders of Z(G) are the divisors of pq, which are 1, p, q, pq if
p 6= q, and 1, p, p2 if p = q. If the order of Z(G) is pq (or p2), then Z(G) = G
so G/Z(G) is trivial and hence abelian. If the order of Z(G) is p or q then the
order of G/Z(G) is prime, and thus cyclic. From (b) we know that G is abelian.
The only case is where the order of Z(G) is 1, which just means it is the trivial
subgroup.
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4 Problem 2.4.14

(a) Prove that every finite group is finitely generated.

Proof. Clearly, any group is generated by the set of its elements, since the only
subgroup containing all elements is the group itself. Thus a finite group is
generated by a finite set consisting of its elements.

(b) Prove that Z is finitely generated.

Proof. We show Z is generated by {1}. In particular, we show any subgroup G
in Z which contains 1 is equal to Z. Thus, let 1 ∈ G ≤ Z. Since G is closed
under addition, every positive integer n = 1+...+1 ∈ G. Since G is closed under
inverses, a negative integer n = −k is the inverse of a positive integer k ∈ G, so
n ∈ G. Since G is a subgroup, it contains idZ = 0. Thus G contains Z, meaning
G = Z. Thus {1} generates Z, since {1} generates a subgroup containing 1.

(c) Prove that every finitely generated subgroup of Q is cyclic.

Proof. LetH be a subgroup of Q generated by the finite set of rationals {p1/q1, ..., pn/qn}.
Let k = q1...qn. Each pi/qi = (q1...qi−1piqi+1...qn)/k is an integer multiple of
1/k, so each generator of H is contained in the cyclic subgroup generated by
1/k. Thus implies H is a subgroup of 〈1/k〉, and subgroups of cyclic groups are
cyclic, so H is cyclic as desired.

(d) Prove that Q is not finitely generated.

Proof. If Q is finitely generated, then (c) implies Q is cyclic. This is false, since
if p/q were a generator for Q, then every rational would of the form np/q for
n ∈ Z, but there is no integer n with np/q = p/(2q) ∈ Q (assuming that p/q 6= 0,
but p/q = 0 would only generate the trivial subgroup). Thus Q is not cyclic, so
it cannot be finitely generated.
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5 Problem 3.2.10

Let H,K be subgroups of finite index in G; |G : H| = m, |G : K| = n. Prove
that lcm(m,n) ≤ |G : H ∩ K| ≤ mn. Deduce that if m,n are coprime, then
|G : H ∩K| = mn.

Proof. Let a1H, ..., amH be disjoint cosets of H, and let b1K, ..., bnK be disjoint
cosets of K. For any c ∈ G, there are unique cosets aiH, bjK such that c ∈
aiH, c ∈ bjK; c ∈ aiH∩bjK. Consider the coset c(H∩K) and let d ∈ c(H∩K).
Then for some x ∈ H ∩K, d = cx. Since x ∈ H, d is in the same H coset as c,
and since x ∈ K, d is in the same K coset as c. Thus d ∈ aiH ∩ bjK, showing
that c(H ∩K) ⊂ aiH ∩ bjK. If c(H ∩K), d(H ∩K) are two cosets contained
in aiH ∩ bjK, then we have c, d ∈ aiH ∩ bjK. Then c = dx for x ∈ H, c = dy
for y ∈ K. But then x = y ∈ H ∩K, so the two cosets c(H ∩K), d(H ∩K) are
equal. Thus far, we have shown that every coset of H ∩K is contained in some
aiH ∩ bjK, and that if two cosets of H ∩K are contained in aiH ∩ bjK, they
are equal. Since there are mn such sets aiH ∩ bjK, there are at most mn cosets
of H ∩K.

Using the result of Problem 3.2.11, since H ∩K ≤ H ≤ G, we have that |G :
H| divides |G : H ∩K|; similarly, |G : K| divides |G : H ∩K|. Thus |G : H ∩K|
is a multiple of m and n, so by definition of lcm, lcm(m,n) ≤ |G : H ∩K|.

Now, if m,n are coprime, then lcm(m,n) = mn, so the inequality gives
mn ≤ |G : H ∩K| ≤ mn, implying |G : H ∩K| = mn.
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6 Problem 3.2.11

Let H ≤ K ≤ G. Prove that |G : H| = |G : K| · |K : H|.

Proof. Let |G : K| = m, |K : H| = n. Let the disjoint cosets of K in G be
a1K, ..., amK, and let the disjoint cosets of H in K be b1H, ..., bnH. For g ∈ G,
there is a unique i such that g ∈ aiK, so let k ∈ K be such that g = aik. Then
there is a unique j such that k ∈ bjH, so let h ∈ H be such that k = bjh. Then
g = aibjh, so g ∈ aibjH. Thus every coset of H in G can be written in the form
aibjH.

Consider the cosets aibjH, ai′bj′H, and suppose they are equal. Then for
some h ∈ H, aibj = ai′bj′h. Since bj , bj′ , h ∈ K, we have that aibjK = aiK and
ai′bj′hK = ai′K. Thus aiK = ai′K, so by definition of the a′is we have i = i′.
Cancelling out the ai = ai′ terms, we get bj = bj′h, implying that bjH = bj′H,
so by definition of the b′js we have j = j′. Therefore, the cosets aibjH, ai′bj′H
are disjoint if i 6= i′ or j 6= j′. This gives mn distinct cosets of H in G, and we
have seen that all cosets arise as aibjH, so |G : H| = mn as desired.
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