MATH 7210 Homework 11

Andrea Bourque

December 2021

1 Problem 1

Let R be a PID, and M a finitely generated torsion R-module. Let n be the number of invariant factors of M, and let m be the number of elementary divisors of M.

a) If $M = M_1 \oplus \cdots \oplus M_s$, where the M_i 's are nonzero cyclic modules, show that $n \leq s \leq m$.
Proof. \Box
b) Show that if $s=m$, then the given decomposition is the elementary livisor decomposition, up to order.
Proof. \Box
c) Give an example of a finite abelian group and a direct sum decomposition which is not the invariant factor decomposition, up to order, but with $s = n$.
Proof.

2 Problem 2

Let R be a PID, and M, N two finitely generated torsion R-modules. Show that if $M \oplus M \cong N \oplus N$, then $M \cong N$.

Proof. Let $M=R/(m_1)\oplus\cdots\oplus R/(m_j)$ be the invariant factor decomposition of M; let $N=R/(n_1)\oplus\cdots\oplus R/(n_k)$ be the invariant factor decomposition of N. Then $M\oplus M=R/(m_1)\oplus R/(m_1)\oplus\cdots R/(m_j)\oplus R/(m_j)$ by just rearranging summands. Furthermore, since $m_1\mid m_2\mid\ldots\mid m_j$, we have $m_1\mid m_1\mid\ldots\mid m_j\mid m_j$, so we have $M\oplus M$ in invariant factor decomposition. Similar result holds for $N\oplus N$. Since $M\oplus M\cong N\oplus N$, we have that the list m_1,m_1,\ldots,m_j,m_j is the same as the list n_1,n_1,\ldots,n_k,n_k , implying that the list m_1,\ldots,m_j is the same as the list n_1,\ldots,n_k , implying that $M\cong N$.

3 Problem 3

a) What are the possible minimal polynomials of an idempotent matrix? Proof. Let $p(X) = X^2 - X$. If A is idempotent, then by definition p(A) = 0. However, if A is the identity, which is idempotent, then the minimal polynomial is X - 1. If A = 0, which is also idempotent, the minimal polynomial is X. Clearly, these are the only two matrices which satisfy these two polynomials, so in all other cases the minimal polynomial is $p(X) = X^2 - X$.

b) Show that an idempotent matrix is diagonalizable.

Proof. The possible minimal polynomials $X, X - 1, X^2 - X$ all have roots with multiplicity 1, implying that the generalized eigenvalues of A all have one-dimensional generalized eigenspaces. Thus, the Jordan canonical form of A is made up of 1 by 1 blocks; the Jordan form is diagonal.

c) Show that two idempotent matrices are similar iff they have the same rank.

Proof. Note that the only eigenvalues of an idempotent matrix are 0,1. Since the Jordan form is diagonal, it consists of m 1's along the diagonal and 0's everywhere else. The rank of such a matrix is clearly m, which is also the rank of A. Furthermore, the number m of 1's along the diagonal uniquely determines the Jordan form. Thus, if the rank of A is m, the Jordan form must have m 1's. Since two matrices are similar iff they have the same Jordan form, two idempotent matrices are similar iff they have the same rank.

4 Problem 4

Let $A \in M_{n \times n}(F)$ be the matrix with all entries equal to 1.

a) Determine the Jordan canonical form if $F = \mathbb{Q}$.

Proof. A simple calculation shows that $A^2 = nA$. Then the minimal polynomial is $X^2 - nX$, except when n = 1, in which the minimal polynomial is X - 1. Note that $A \neq nI$, $A \neq 0$, so that X - n and X are not the minimal polynomial. In that case, A is obviously already in Jordan form. Thus let n > 1. Now we see that A has eigenvalues 0 and n, with geometric multiplicities of 1 and 1 respectively. It follows that the Jordan blocks must all be 1 by 1. A can be row reduced to a matrix with a single nonzero row, so the rank of A is 1. Then the Jordan form also has rank 1, meaning it must be a diagonal matrix with one n and 0's everywhere else.

b) Determine the Jordan canonical form if $F = \mathbb{Z}/p\mathbb{Z}$, where p is prime.

Proof. First assume p does not divide n. Then everything from part a applies, and the Jordan form is diagonal with one n and 0's everywhere else. If $p \mid n$, then we have $A^2 = 0$, so the minimal polynomial is X^2 (and not X, since $A \neq 0$). Thus all the eigenvalues are 0, and there is at least one 2 by 2 Jordan block. Since the rank of A is 1, there can only be one 2 by 2 Jordan block, since this will give the single non-zero row in the Jordan form of A. Thus, the Jordan form of A consists of a single 1 on the off-diagonal, and 0's everywhere else. \square