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1 Problem 1

Let p be an odd prime.

a) Show that 2
p−1
2 ≡ (−1)

p2−1
8 (mod p).

Proof.

b) Show that 2 is a quadratic residue mod p iff p ≡ ±1 mod 8.

Proof. (→) Let x2 ≡ 2 mod p. Then 1 ≡ xp−1 ≡ 2
p−1
2 ≡ (−1)

p2−1
8 mod p. Thus

p2−1
8 = 2n for some n, or p2 ≡ 1 mod 16. This gives p ≡ 1, 7, 9, 15 mod 16,

which implies p ≡ ±1 mod 8.
(←) Let p ≡ ±1 mod 8. Then p2 = (8n± 1)2 = 64n2± 16n+1 ≡ 1 mod 16,

so that (−1)
p2−1

8 = 1. Thus 2
p−1
2 ≡ 1 mod p. In Homework 8 Problem 4, we

showed that exactly half of 1, ..., p− 1 are quadratic residues. Furthermore, any

nonzero square a2 is a solution to x
p−1
2 − 1 ≡ 0 mod p. This polynomial has no

more than p−1
2 roots, but all p−1

2 quadratic residues are roots. Thus, since 2 is
a solution, 2 is a quadratic residue.

c) Show that −2 is a quadratic residue mod p iff p ≡ 1, 3 mod 8.

Proof. (→) Let x2 ≡ −2 mod p. Then 1 ≡ xp−1 ≡ (−1)
p−1
2 2

p−1
2 ≡ (−1)

p2−1
8 + p−1

2

mod p. Then p2 − 1 + 4(p − 1) ≡ 0 mod 16, or (p + 2)2 ≡ 9 mod 16, giving
p ≡ 1, 3, 9, 11 mod 16, which implies p ≡ 1, 3 mod 8.

(←) Let p ≡ 1, 3 mod 8. If p = 8n + 1, then p2−1
8 + p−1

2 = 4n + 8n2 + 2n,

which is even. If 8n+3, then p2−1
8 + p−1

2 = 4n+1+8n2 +6n+1, which is also

even. Thus (−2)
p−1
2 ≡ 1 mod p. As in part b, a solution to x

p−1
2 − 1 ≡ 0 mod

p is a quadratic residue, so −2 is a quadratic residue.
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2 Problem 2

a) Show that if p is an odd prime congruent to 5 or 7 mod 8, then p is irreducible
in Z[

√
−2].

Proof. Consider the norm N(a + b
√
−2) = a2 + 2b2. If p = xy, then N(p) =

p2 = N(x)N(y), implying N(x) ∈ {1, p, p2}. Suppose further than neither x
nor y is a unit. Let x = a + b

√
−2. N(x) = 1 implies a2 = 1, since if b ̸= 0,

N(x) ≥ 2. Then x = ±1 is a unit, which is a contradiction. N(x) = p2 implies
N(y) = 1, meaning y is a unit, which is also against our assumption. Thus
N(x) = p; we have p = a2 + 2b2. If b is even, then p ≡ a2 mod 8. The squares
mod 8 are seen to be 0 or 1, which contradicts p ≡ 5, 7 mod 8. Thus suppose
b = 2c+1. p = a2+2(2c+1)2 = a2+2(4c2+4c+1) ≡ a2+2 mod 8. Since the
squares are either 0 or 1, a2 + 2 is either 2 or 3 mod 8, which again contradicts
p ≡ 5,7 mod 8. We have exhausted all possibilities from the assumption that p
can be factored into a product of two non-units, so p is irreducible.

b) Show that if p is an odd prime congruent to 1 or 3 mod 8, then p splits
into 2 nonassociate irreducibles in Z[

√
−2].

Proof.

c) Show that a complete list of the irreducibles in Z[
√
−2] up to associates

is given by
√
−2, primes p where p ≡ 5, 7 mod 8, and ap ± bp

√
−2 where p is

prime and 1 or 3 mod 8, with a2p + 2b2p = p.

Proof.
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3 Problem 3

a) If I is a left ideal, show that R/I is simple iff I is maximal.

Proof. (←) If I is maximal, R/I is a field, and we know fields are simple.
(→) If J is an ideal of R containing I, then J/I is an ideal of R/I. Since

R/I is simple, J/I = 0 or R/I. J/I = 0 implies J = I, and J/I = R/I implies
J = R. Thus I is maximal.

b) Show that every simple module is cyclic.

Proof. Any module has submodules Rm for m ∈M . If m ̸= 0, then Rm ̸= 0 as
a submodule. If M is simple, this implies Rm = M .

c) Given m ∈ M , show that ϕm : R → M given by ϕm(r) = rm is an
R-module map with image Rm.

Proof. For a, r, s ∈ R, we have ϕm(ar+s) = (ar+s)m = arm+sm = aϕm(r)+
ϕm(s), so that ϕm is an R-module map. The image is clearly Rm by definition;
ϕm(r) = rm ∈ Rm for all r ∈ R and any x ∈ Rm is equal to rm = ϕm(r) for
some r.

d) Show that every simple R module is isomorphic to R/I for some maximal
left ideal I.

Proof. From part b, we know that a simple module is cyclic, say M = Rm.
Then from part c, we know that Rm is the image of the map ϕm. Then M is
isomorphic to R/ kerϕm. Suppose that kerϕm is not maximal, so that there is
an ideal J strictly between kerϕm and R. Then R/J is a nontrivial submodule
of R/ kerϕm, contradicting the fact that R/ kerϕm, being isomorphic to M , is
simple. Thus kerϕm is maximal, and M is isomorphic to R/I, where I = kerϕm

is maximal.

e) What are the simple C[X] modules? Can you generalize to F [X] modules
for an arbitrary field F?

Proof. We must identify the maximal ideals I of C[X]. Polynomial rings over
a field are PIDs, so any non-trivial ideal I = (p) for a monic polynomial p(X).
Furthermore, C is algebraically closed, meaning that p factors as a product
Πi(X − ri) over its roots ri. But then I is contained in (X − r1), so it is not
maximal. We can then see that the ideals (X − r) are the maximal ideals.
C[X]/(X − r) ∼= C[r] = C since r ∈ C. Thus, the simple C[X] modules are just
isomorphic to C.

This cannot be generalized to arbitrary fields since we have used the fact
that F is algebraically closed.
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4 Problem 4

If M is a simple R-module, show that EndR(M) is a division ring.

Proof. For ϕ ∈ EndR(M), kerϕ and imϕ are both submodules of M , so they
are either 0 or M . If kerϕ = 0, then imϕ = M , and if kerϕ = M , then imϕ = 0.
Thus ϕ is either the 0 map or an isomorphism. Therefore, the non-zero elements
of EndR(M) are invertible, so EndR(M) is a division ring.
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5 Problem 9.5.7

Prove that the additive and multiplicative groups of a field are never isomorphic.

Proof. If F is a finite field, suppose it has N elements. Then the additive group
consists of all N elements, while the multiplicative group consists of the N − 1
nonzero elements, so they cannot be isomorphic since they have different orders.

If F is infinite with characteristic p, then every element in the additive
group satisfies px = 0. Thus, if the multiplicative group were to be isomorphic
to the additive group, every non-zero element x ∈ F would satisfy xp = 1. We
note that binomial coefficients pCk for k = 1, ..., p − 1 are divisible by p, by
considering the fact that the denominator k!(p − k)! has no factors of p. Then
1 = (x+1)p = xp+1p = 1+1 = 2, implying 1 = 0, which is never true in a field.
Therefore, the multiplicative group and additive group are not isomorphic.

If F is infinite with characteristic 0, then 2x = 0 implies x = 0, where as
x2 = 1 implies x = 1 or x = −1; the multiplicative group has an element of order
2, while the additive group does not. Thus, they cannot be isomorphic.
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6 Problem 10.3.2

Assume R is commutative. Prove that Rn ∼= Rm iff n = m.

Proof. (←) If m = n, then obviously Rn ∼= Rm.
(→) First we consider Exercise 10.2.12: Rn/IRn ∼= R/IR × ... × R/IR =

(R/IR)n. It suffices to show that IRn = (IR)n. Consider the standard basis
e1, ..., en of Rn. Then IRn contains Iei ∼= I for each i = 1, ..., n. By taking
linear combinations, IRn then contains any element of (IR)n. Similarly, (IR)n

is also generated by n linearly independent copies of I, so (IR)n = IRn. Thus
Rn/IRn = (R/IR)n.

Now we apply the exercise with I maximal. R/I is then a field, say F ,
and (R/I)n = Fn can be considered as an n-dimensional vector space. Thus if
Rn ∼= Rm, Fn ∼= Rn/IRn ∼= Rm/IRm ∼= Fm. From linear algebra, isomorphic
finite dimensional vector spaces have the same dimension, so n = m. (Hint, use
I maximal).
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