MATH 7210 Homework 10

Andrea Bourque

November 2021

1 Problem 1

Let p be an odd prime.

a) Show that $2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p^2-1}{8}} \pmod{p}$.

Proof.

b) Show that 2 is a quadratic residue mod p iff $p \equiv \pm 1 \mod 8$.

Proof. (\rightarrow) Let $x^2 \equiv 2 \mod p$. Then $1 \equiv x^{p-1} \equiv 2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p^2-1}{8}} \mod p$. Thus $\frac{p^2-1}{8} = 2n$ for some n, or $p^2 \equiv 1 \mod 16$. This gives $p \equiv 1, 7, 9, 15 \mod 16$, which implies $p \equiv \pm 1 \mod 8$.

 (\leftarrow) Let $p \equiv \pm 1 \mod 8$. Then $p^2 = (8n \pm 1)^2 = 64n^2 \pm 16n + 1 \equiv 1 \mod 16$, so that $(-1)^{\frac{p^2-1}{8}} = 1$. Thus $2^{\frac{p-1}{2}} \equiv 1 \mod p$. In Homework 8 Problem 4, we showed that exactly half of $1, \dots, p-1$ are quadratic residues. Furthermore, any nonzero square a^2 is a solution to $x^{\frac{p-1}{2}} - 1 \equiv 0 \mod p$. This polynomial has no more than $\frac{p-1}{2}$ roots, but all $\frac{p-1}{2}$ quadratic residues are roots. Thus, since 2 is a solution, 2 is a quadratic residue.

c) Show that -2 is a quadratic residue mod p iff $p \equiv 1, 3 \mod 8$.

Proof. (\rightarrow) Let $x^2 \equiv -2 \mod p$. Then $1 \equiv x^{p-1} \equiv (-1)^{\frac{p-1}{2}} 2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p^2-1}{8} + \frac{p-1}{2}} \mod p$. Then $p^2 - 1 + 4(p-1) \equiv 0 \mod 16$, or $(p+2)^2 \equiv 9 \mod 16$, giving $p \equiv 1, 3, 9, 11 \mod 16$, which implies $p \equiv 1, 3 \mod 8$.

 (\leftarrow) Let $p \equiv 1, 3 \mod 8$. If p = 8n + 1, then $\frac{p^2 - 1}{8} + \frac{p - 1}{2} = 4n + 8n^2 + 2n$, which is even. If 8n + 3, then $\frac{p^2 - 1}{8} + \frac{p - 1}{2} = 4n + 1 + 8n^2 + 6n + 1$, which is also even. Thus $(-2)^{\frac{p-1}{2}} \equiv 1 \mod p$. As in part b, a solution to $x^{\frac{p-1}{2}} - 1 \equiv 0 \mod p$ is a quadratic residue, so -2 is a quadratic residue.

2 Problem 2

a) Show that if p is an odd prime congruent to 5 or 7 mod 8, then p is irreducible in $\mathbb{Z}[\sqrt{-2}]$.

Proof. Consider the norm $N(a + b\sqrt{-2}) = a^2 + 2b^2$. If p = xy, then $N(p) = p^2 = N(x)N(y)$, implying $N(x) \in \{1, p, p^2\}$. Suppose further than neither x nor y is a unit. Let $x = a + b\sqrt{-2}$. N(x) = 1 implies $a^2 = 1$, since if $b \neq 0$, $N(x) \geq 2$. Then $x = \pm 1$ is a unit, which is a contradiction. $N(x) = p^2$ implies N(y) = 1, meaning y is a unit, which is also against our assumption. Thus N(x) = p; we have $p = a^2 + 2b^2$. If b is even, then $p \equiv a^2 \mod 8$. The squares mod 8 are seen to be 0 or 1, which contradicts $p \equiv 5,7 \mod 8$. Thus suppose b = 2c + 1. $p = a^2 + 2(2c + 1)^2 = a^2 + 2(4c^2 + 4c + 1) \equiv a^2 + 2 \mod 8$. Since the squares are either 0 or 1, $a^2 + 2$ is either 2 or 3 mod 8, which again contradicts $p \equiv 5,7 \mod 8$. We have exhausted all possibilities from the assumption that p can be factored into a product of two non-units, so p is irreducible.

b) Show that if p is an odd prime congruent to 1 or 3 mod 8, then p splits into 2 nonassociate irreducibles in $\mathbb{Z}[\sqrt{-2}]$.

Proof.

c) Show that a complete list of the irreducibles in $\mathbb{Z}[\sqrt{-2}]$ up to associates is given by $\sqrt{-2}$, primes p where $p \equiv 5,7 \mod 8$, and $a_p \pm b_p \sqrt{-2}$ where p is prime and 1 or 3 mod 8, with $a_p^2 + 2b_p^2 = p$.

Proof.

3 Problem 3

a) If I is a left ideal, show that R/I is simple iff I is maximal.

Proof. (\leftarrow) If I is maximal, R/I is a field, and we know fields are simple.

 (\rightarrow) If J is an ideal of R containing I, then J/I is an ideal of R/I. Since R/I is simple, J/I = 0 or R/I. J/I = 0 implies J = I, and J/I = R/I implies J = R. Thus I is maximal.

b) Show that every simple module is cyclic.

Proof. Any module has submodules Rm for $m \in M$. If $m \neq 0$, then $Rm \neq 0$ as a submodule. If M is simple, this implies Rm = M.

c) Given $m \in M$, show that $\phi_m : R \to M$ given by $\phi_m(r) = rm$ is an *R*-module map with image Rm.

Proof. For $a, r, s \in R$, we have $\phi_m(ar+s) = (ar+s)m = arm + sm = a\phi_m(r) + \phi_m(s)$, so that ϕ_m is an *R*-module map. The image is clearly Rm by definition; $\phi_m(r) = rm \in Rm$ for all $r \in R$ and any $x \in Rm$ is equal to $rm = \phi_m(r)$ for some r.

d) Show that every simple R module is isomorphic to R/I for some maximal left ideal I.

Proof. From part b, we know that a simple module is cyclic, say M = Rm. Then from part c, we know that Rm is the image of the map ϕ_m . Then M is isomorphic to $R/\ker \phi_m$. Suppose that $\ker \phi_m$ is not maximal, so that there is an ideal J strictly between $\ker \phi_m$ and R. Then R/J is a nontrivial submodule of $R/\ker \phi_m$, contradicting the fact that $R/\ker \phi_m$, being isomorphic to M, is simple. Thus $\ker \phi_m$ is maximal, and M is isomorphic to R/I, where $I = \ker \phi_m$ is maximal.

e) What are the simple $\mathbb{C}[X]$ modules? Can you generalize to F[X] modules for an arbitrary field F?

Proof. We must identify the maximal ideals I of $\mathbb{C}[X]$. Polynomial rings over a field are PIDs, so any non-trivial ideal I = (p) for a monic polynomial p(X). Furthermore, \mathbb{C} is algebraically closed, meaning that p factors as a product $\Pi_i(X - r_i)$ over its roots r_i . But then I is contained in $(X - r_1)$, so it is not maximal. We can then see that the ideals (X - r) are the maximal ideals. $\mathbb{C}[X]/(X - r) \cong \mathbb{C}[r] = \mathbb{C}$ since $r \in \mathbb{C}$. Thus, the simple $\mathbb{C}[X]$ modules are just isomorphic to \mathbb{C} .

This cannot be generalized to arbitrary fields since we have used the fact that F is algebraically closed.

4 Problem 4

If M is a simple R-module, show that $\operatorname{End}_R(M)$ is a division ring.

Proof. For $\phi \in \operatorname{End}_R(M)$, ker ϕ and im ϕ are both submodules of M, so they are either 0 or M. If ker $\phi = 0$, then im $\phi = M$, and if ker $\phi = M$, then im $\phi = 0$. Thus ϕ is either the 0 map or an isomorphism. Therefore, the non-zero elements of $\operatorname{End}_R(M)$ are invertible, so $\operatorname{End}_R(M)$ is a division ring. \Box

5 Problem 9.5.7

Prove that the additive and multiplicative groups of a field are never isomorphic.

Proof. If F is a finite field, suppose it has N elements. Then the additive group consists of all N elements, while the multiplicative group consists of the N-1 nonzero elements, so they cannot be isomorphic since they have different orders.

If F is infinite with characteristic p, then every element in the additive group satisfies px = 0. Thus, if the multiplicative group were to be isomorphic to the additive group, every non-zero element $x \in F$ would satisfy $x^p = 1$. We note that binomial coefficients ${}_{p}C_{k}$ for k = 1, ..., p - 1 are divisible by p, by considering the fact that the denominator k!(p-k)! has no factors of p. Then $1 = (x+1)^{p} = x^{p} + 1^{p} = 1 + 1 = 2$, implying 1 = 0, which is never true in a field. Therefore, the multiplicative group and additive group are not isomorphic.

If F is infinite with characteristic 0, then 2x = 0 implies x = 0, where as $x^2 = 1$ implies x = 1 or x = -1; the multiplicative group has an element of order 2, while the additive group does not. Thus, they cannot be isomorphic.

6 Problem 10.3.2

Assume R is commutative. Prove that $R^n \cong R^m$ iff n = m.

Proof. (\leftarrow) If m = n, then obviously $\mathbb{R}^n \cong \mathbb{R}^m$.

 (\rightarrow) First we consider Exercise 10.2.12: $\mathbb{R}^n/I\mathbb{R}^n \cong \mathbb{R}/I\mathbb{R} \times \ldots \times \mathbb{R}/I\mathbb{R} = (\mathbb{R}/I\mathbb{R})^n$. It suffices to show that $I\mathbb{R}^n = (I\mathbb{R})^n$. Consider the standard basis e_1, \ldots, e_n of \mathbb{R}^n . Then $I\mathbb{R}^n$ contains $Ie_i \cong I$ for each $i = 1, \ldots, n$. By taking linear combinations, $I\mathbb{R}^n$ then contains any element of $(I\mathbb{R})^n$. Similarly, $(I\mathbb{R})^n$ is also generated by n linearly independent copies of I, so $(I\mathbb{R})^n = I\mathbb{R}^n$. Thus $\mathbb{R}^n/I\mathbb{R}^n = (\mathbb{R}/I\mathbb{R})^n$.

Now we apply the exercise with I maximal. R/I is then a field, say F, and $(R/I)^n = F^n$ can be considered as an *n*-dimensional vector space. Thus if $R^n \cong R^m$, $F^n \cong R^n/IR^n \cong R^m/IR^m \cong F^m$. From linear algebra, isomorphic finite dimensional vector spaces have the same dimension, so n = m. (Hint, use I maximal).