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1 Problem 1

Let p be an odd prime.

2

a) Show that 2°=° = (—1)"

(mod p).
Proof. O

b) Show that 2 is a quadratic residue mod p iff p = +1 mod 8.

Proof. (—) Let 22 =2 mod p. Then 1 = 27~ = 2" = (71)% mod p. Thus
p%l = 2n for some n, or p> = 1 mod 16. This gives p = 1,7,9,15 mod 16,
which implies p = 1 mod 8.

(«) Let = il mod 8. Then p = (8n+1)?2 =64n?+16n+1 = 1 mod 16,

so that (— )p = 1. Thus 2" = 1 mod p. In Homework 8 Problem 4, we

showed that exactly half of 1,...,p — 1 are quadratic residues. Furthermore, any

nonzero square a? is a solution to 2% —1=0mod p. This polynomial has no

more than pTl roots, but all p L quadratic residues are roots. Thus, since 2 is

a solution, 2 is a quadratic rebldue O

¢) Show that —2 is a quadratic residue mod p iff p = 1,3 mod 8.

1

b1 2_
Proof. (— )Letm = _—2modp. Thenl= 2P = (-1)"z 2" = (-1)"5
mod p. Then p? — 1+ 4(p — 1) = 0 mod 16, or (p + 2)?> = 9 mod 16, giving
p=1,3,9,11 mod 16, which implies p = 1,3 mod 8
(<) Let p=1,3 mod 8. If p = 8n + 1, then 25+ + 221 = 4n + 8n? + 2n,
which is even. If 8n + 3, then ”8—71 + pT =4n+1 + 8n? 4 6n + 1, which is also
even. Thus (—2)pr1 =1 mod p. As in part b, a solution to 2"2° — 1 = 0 mod
p is a quadratic residue, so —2 is a quadratic residue. O




2 Problem 2

a) Show that if p is an odd prime congruent to 5 or 7 mod 8, then p is irreducible

in Z[v/-2].

Proof. Consider the norm N(a + by/—2) = a® + 2b%. If p = xy, then N(p) =
p? = N(x)N(y), implying N(z) € {1,p,p*}. Suppose further than neither z
nor y is a unit. Let * = a + bv/—2. N(z) = 1 implies a? = 1, since if b # 0,
N(x) > 2. Then x = 41 is a unit, which is a contradiction. N(z) = p? implies
N(y) = 1, meaning y is a unit, which is also against our assumption. Thus
N(x) = p; we have p = a? + 2b%. If b is even, then p = a® mod 8. The squares
mod 8 are seen to be 0 or 1, which contradicts p = 5,7 mod 8. Thus suppose
b=2c+1. p=a?+22c+1)? =a®+2(4c®> +4c+1) = a® +2 mod 8. Since the
squares are either 0 or 1, a® + 2 is either 2 or 3 mod 8, which again contradicts
p = 5,7 mod 8. We have exhausted all possibilities from the assumption that p
can be factored into a product of two non-units, so p is irreducible. O

b) Show that if p is an odd prime congruent to 1 or 3 mod 8, then p splits
into 2 nonassociate irreducibles in Z[v/—2].

Proof. O

¢) Show that a complete list of the irreducibles in Z[v/—2] up to associates
is given by /-2, primes p where p = 5,7 mod 8, and a, + b,+/—2 where p is
prime and 1 or 3 mod 8, with a2 4 2b2 = p.

Proof. O



3 Problem 3

a) If I is a left ideal, show that R/I is simple iff T is maximal.

Proof. (+) If I is maximal, R/I is a field, and we know fields are simple.

(=) If J is an ideal of R containing I, then J/I is an ideal of R/I. Since
R/I is simple, J/I =0or R/I. J/I =0 implies J = I, and J/I = R/I implies
J = R. Thus I is maximal. 0

b) Show that every simple module is cyclic.

Proof. Any module has submodules Rm for m € M. If m # 0, then Rm # 0 as
a submodule. If M is simple, this implies Rm = M. O

c) Given m € M, show that ¢,, : R — M given by ¢,,(r) = rm is an
R-module map with image Rm.

Proof. For a,r,s € R, we have ¢y, (ar+s) = (ar+s)m = arm+sm = adp, (1) +
dm($), so that ¢,, is an R-module map. The image is clearly Rm by definition;
¢m(r) =rm € Rm for all r € R and any € Rm is equal to rm = ¢,,,(r) for
some 7. O

d) Show that every simple R module is isomorphic to R/ for some maximal
left ideal I.

Proof. From part b, we know that a simple module is cyclic, say M = Rm.
Then from part ¢, we know that Rm is the image of the map ¢,,,. Then M is
isomorphic to R/ ker ¢,,,. Suppose that ker ¢,,, is not maximal, so that there is
an ideal J strictly between ker ¢,, and R. Then R/J is a nontrivial submodule
of R/ker ¢,,, contradicting the fact that R/ker ¢,,, being isomorphic to M, is
simple. Thus ker ¢, is maximal, and M is isomorphic to R/I, where I = ker ¢,
is maximal. O

e) What are the simple C[X] modules? Can you generalize to F[X] modules
for an arbitrary field F'?

Proof. We must identify the maximal ideals I of C[X]. Polynomial rings over
a field are PIDs, so any non-trivial ideal I = (p) for a monic polynomial p(X).
Furthermore, C is algebraically closed, meaning that p factors as a product
IT;(X — r;) over its roots r;. But then I is contained in (X — r1), so it is not
maximal. We can then see that the ideals (X — r) are the maximal ideals.
C[X]/(X —r) =2 C[r] = C since r € C. Thus, the simple C[X] modules are just
isomorphic to C.

This cannot be generalized to arbitrary fields since we have used the fact
that F is algebraically closed. O



4 Problem 4

If M is a simple R-module, show that Endg(M) is a division ring.

Proof. For ¢ € Endg(M), ker ¢ and im¢ are both submodules of M, so they
are either 0 or M. If ker ¢ = 0, then im¢ = M, and if ker ¢ = M, then im¢ = 0.
Thus ¢ is either the 0 map or an isomorphism. Therefore, the non-zero elements
of Endr (M) are invertible, so Endg (M) is a division ring. O



5 Problem 9.5.7

Prove that the additive and multiplicative groups of a field are never isomorphic.

Proof. If F is a finite field, suppose it has N elements. Then the additive group
consists of all N elements, while the multiplicative group consists of the N — 1
nonzero elements, so they cannot be isomorphic since they have different orders.

If F is infinite with characteristic p, then every element in the additive
group satisfies pr = 0. Thus, if the multiplicative group were to be isomorphic
to the additive group, every non-zero element z € F' would satisfy 2P = 1. We
note that binomial coefficients ,C} for k = 1,...,p — 1 are divisible by p, by
considering the fact that the denominator k!(p — k)! has no factors of p. Then
1=(x+1)P =2P+17 = 141 = 2, implying 1 = 0, which is never true in a field.
Therefore, the multiplicative group and additive group are not isomorphic.

If F is infinite with characteristic 0, then 22 = 0 implies x = 0, where as
22 = 1 implies z = 1 or z = —1; the multiplicative group has an element of order
2, while the additive group does not. Thus, they cannot be isomorphic. O



6 Problem 10.3.2

Assume R is commutative. Prove that R® = R™ iff n = m.

Proof. (+) If m = n, then obviously R™ = R™.

(—) First we consider Exercise 10.2.12: R"/IR™ =2 R/IR x ... Xx R/IR =
(R/IR)™. Tt suffices to show that ITR™ = (IR)™. Consider the standard basis
€1,...,e, of R™. Then IR™ contains Ie; = I for each ¢ = 1,...,n. By taking
linear combinations, I R™ then contains any element of (I R)™. Similarly, (IR)"
is also generated by n linearly independent copies of I, so (IR)” = IR". Thus
R"/IR" = (R/IR)".

Now we apply the exercise with I maximal. R/I is then a field, say F,
and (R/I)"™ = F™ can be considered as an n-dimensional vector space. Thus if
R*~ R™ F" X~ R"/IR" = R™/IR™ = F™. From linear algebra, isomorphic
finite dimensional vector spaces have the same dimension, so n = m. (Hint, use
I maximal). O



