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1 Problem 2(b,c)

b) Show that a finite cancellation semigroup is a group.

Proof. Let S = {1, ..., 2, } be a cancellation semigroup. Consider the set 215 =
{xlmj,j =1,...,n}. Since 17 = x17; implies x; = x;, each z1x; is a distinct
element in S; there are n of them, so 1S = S. In fact, ;S = S for each i,
a fact used later. In particular, there is some k such that z1xr = x;. Then
121 = x1x1; by multiplication on the right by z;, and then cancellation on
the left gives zxx1 = z1. Now, consider x;x; for some i. This must be in S,
so it is equal to some x;. Right-multiplying by x1 gives ;2321 = x;x1, but
on the left hand side, using zpx; = x1, we have z;x1. Then right-cancellation
gives x; = x;. Thus x;x, = =; for all 4. Similarly, zxz; = x; for all ¢, which
follows by left-multiplying x;, simplifying the left hand side, and then using
left-cancellation. Thus, xj is an identity element.

Using 2;S = S again, we see that there is some j such that z;z; = z.
Right-multiplying by x; gives x;x;2; = xpx;, where the right hand side is also
equal to x;x. Left-cancellation gives x;x; = x;. Thus each element z; € S has
an inverse. Thus, S is a group. O

¢) Give an example of an infinite cancellation semigroup which is not a group.

Proof. Consider the non-zero integers Z*, with the operation of standard integer
multiplication. Since Z has no zero-divisors, ab = ac implies b = ¢ for a # 0.
(In particular, in the ring Z, a(b—c¢) =0soa =0 or b —c=0). Thus Z* is an
infinite cancellation semigroup. However, it is not a group, since there are no
inverses; there is no integer a for which 2a = 1. O



2 Problem 4

Let G be a group.
a) If G is a group of even order, then the number of elements of order 2 is

odd.

Proof. Notice that g = g~! implies g?> = e, which means g is either identity or
has order 2. Then the elements of order > 2 come in pairs (z,z71), so there
are an even number of them. Since |G| is even, there are an even number of
elements that are their own inverses. One of these is the identity, so there are
an odd number of order 2 elements. O

b) Show TFAE:
i) G is abelian.
ii) ¢ : G — G given by t(a) = a™! is a group homomorphism.
iii) h : G — G given by h(a) = a? is a group homomorphism.

1

Proof. i)— ii) t(ab) = (ab)~' = b~ta~! = a7 'b~!, with the last equality coming
from G being abelian. Then a=1b~1 = (a)c(b), so ¢ is a group homomorphism.

ii)— 1) (a™1b7) = t(a=1)e(b™!) implies ba = ab by using the definition of
t. Thus G is abelian since a, b are arbitrary.

i)— iii) h(ab) = (ab)? = abab = aabb, with the last inequality coming from
G being abelian. Then aabb = a?b? = h(a)h(b), so h is a group homomorphism.

iii)— 1) h(ab) = h(a)h(b) gives abab = aabb by using the definition of h. By
left-multiplying by ¢~! and right-multiplying by b—!, we get ba = ab. Since a, b
are arbitrary, G is abelian. O
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Let G be a finite group and let a,b € G such that ab = ba.

a) Show |ab| divides |a||b|.
Proof. Since ab = ba, (ab)" = ab...ab = ab™ for all n. In particular, (ab)!e!l’l =
alellblplalltl = elblelel — ¢, But in general, if 2™ = e, then || divides n. Therefore,
|ab| divides |al|b]. O

b) If (a) N (b) = {e}, show that |ab| = lem{]al,|b|}.

Proof. Note that (ab)l®?l = ¢ = al®lpletl implies al®®l = b=19%. But (a) N
(b) = {e} implies that the only element that is both a power of a and b is e.

Thus al®l = p~19% = e. Thus |a| and |b| divide |ab|. Since |ab| is minimal,
|ab] = lem{]al, |b|}. O
c) If |al, |b| are coprime, show that |ab| = |al|b].

Proof. Suppose a? = b? # e. Then since |a?| divides |a| and |b?| divides |b], |a]
and b share a factor. Thus, if |al, |b| are coprime, (a) N (b) = {e}. The lem of
coprime numbers is their product, so we are done by part b. O

d) Exhibit a counterexample where these results fail if ab # ba.

Proof. Consider the group Sy of permutations on three elements. Consider
the elements a = (34),b = (124). Then |a| = 2,]b] = 3. ab = (1234), while
ba = (1243). |ab| = 4, which does not divide 2%3 = 6, so a fails. (a) = {(34), e},
and (b) = {(124), (142), e}, so {a) N (b) = {e}, but 4 is not the lem of 2 and 3,
so b fails. Finally, 2 and 3 are coprime, but 4 # 2 x 3, so c fails as well. O



4 Problem 6

Let K ={(g4)lz >0,y € R} and H = {(§9)|z > 0}.
a) Show that K, H are subgroups of GL2(R).

Proof. Clearly K,H C GL3(R) since det(§ ) = det(§9) =  # 0 by the
hypothesis that = > 0. Furthermore, both contain the identity (§9) since
1>0.

Now, (¢4)(67) = (% **") € K since wz > 0 for w,z > 0. By solving
wr =1l,zz+y =0 we get w = %,z = -, which are well-defined since = # 0,
and the resulting matrix is in K since x > 0 implies w = % > 0. Thus K is
closed under multiplication and inverses, so K is a subgroup.

Now,
(6 =(%9)eH
1

since w, z > 0 implies wz > 0. The inverse is given when w = _, which is well-

defined and positive since x > 0. Thus H is also closed under multiplication
and inverses, so it is a subgroup. O

b) Is H normal in K7

Proof. First we note that H is a subgroup of K, which is clear since H is obvi-
ously a subset of K by definition, and since both are subgroups of GLs(R). Now
let k = (g?),h: (8(1)) Then khk—! = (‘8?)(5?)(% *1';) = (10331’)(% *1?;) =
(Z y_yz), which is; in general, not an element of H (say y # 0, z # 1). Thus H

0 1
is not normal in K. O

¢) Identify K with the right half plane of R? by (§Y) — (z,y). Draw the
partitions of K into left and right cosets of H.

Proof. For k= (¢ 4), the coset kH consists of (5 ¥) for all z > 0. These are

just the open rays (0,00) x {y}. The right coset Hk consists of (39)(5Y) =

(% %) for all z > 0. These are the open rays starting at the origin and passing
through the point (x,y). For figures, see the next page. O
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Figure 1: Left cosets

Figure 2: Right cosets



5 Problem 2.1.13

Let H be a subgroup of (Q,+) such that 1/2 € H for all nonzero x € H. Prove
H=0o0or H=Q.

Proof. H = 0 satisfies the hypothesis vacuously. Thus assume H # 0. Let
a = 23 € H be nonzero, where p,q are coprime and ¢ > 0. Then a + ... + a, q
times is equal to p, so p € H. Since p,—p € H, let r = |p| € H. Since r # 0,
% € H. Thus % + ...+ %, r times, which is 1, is in H. It follows then that all
integers are in H, since 14+ ...+ 1€ H and —1+...+—1 € H. Then 2 € H
for all nonzero integers n. Then % + ...+ %, m times gives an arbitrary rational

number 7+ € H, so H = Q as desired. O



