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1 Problem 2(b,c)

b) Show that a finite cancellation semigroup is a group.

Proof. Let S = {x1, ..., xn} be a cancellation semigroup. Consider the set x1S =
{x1xj , j = 1, ..., n}. Since x1xj = x1xi implies xi = xj , each x1xj is a distinct
element in S; there are n of them, so x1S = S. In fact, xiS = S for each i,
a fact used later. In particular, there is some k such that x1xk = x1. Then
x1xkx1 = x1x1 by multiplication on the right by x1, and then cancellation on
the left gives xkx1 = x1. Now, consider xixk for some i. This must be in S,
so it is equal to some xj . Right-multiplying by x1 gives xixkx1 = xjx1, but
on the left hand side, using xkx1 = x1, we have xix1. Then right-cancellation
gives xi = xj . Thus xixk = xi for all i. Similarly, xkxi = xi for all i, which
follows by left-multiplying x1, simplifying the left hand side, and then using
left-cancellation. Thus, xk is an identity element.

Using xiS = S again, we see that there is some j such that xixj = xk.
Right-multiplying by xi gives xixjxi = xkxi, where the right hand side is also
equal to xixk. Left-cancellation gives xjxi = xk. Thus each element xi ∈ S has
an inverse. Thus, S is a group.

c) Give an example of an infinite cancellation semigroup which is not a group.

Proof. Consider the non-zero integers Z∗, with the operation of standard integer
multiplication. Since Z has no zero-divisors, ab = ac implies b = c for a 6= 0.
(In particular, in the ring Z, a(b− c) = 0 so a = 0 or b− c = 0). Thus Z∗ is an
infinite cancellation semigroup. However, it is not a group, since there are no
inverses; there is no integer a for which 2a = 1.
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2 Problem 4

Let G be a group.
a) If G is a group of even order, then the number of elements of order 2 is

odd.

Proof. Notice that g = g−1 implies g2 = e, which means g is either identity or
has order 2. Then the elements of order > 2 come in pairs (x, x−1), so there
are an even number of them. Since |G| is even, there are an even number of
elements that are their own inverses. One of these is the identity, so there are
an odd number of order 2 elements.

b) Show TFAE:
i) G is abelian.
ii) ι : G→ G given by ι(a) = a−1 is a group homomorphism.
iii) h : G→ G given by h(a) = a2 is a group homomorphism.

Proof. i)→ ii) ι(ab) = (ab)−1 = b−1a−1 = a−1b−1, with the last equality coming
from G being abelian. Then a−1b−1 = ι(a)ι(b), so ι is a group homomorphism.

ii)→ i) ι(a−1b−1) = ι(a−1)ι(b−1) implies ba = ab by using the definition of
ι. Thus G is abelian since a, b are arbitrary.

i)→ iii) h(ab) = (ab)2 = abab = aabb, with the last inequality coming from
G being abelian. Then aabb = a2b2 = h(a)h(b), so h is a group homomorphism.

iii)→ i) h(ab) = h(a)h(b) gives abab = aabb by using the definition of h. By
left-multiplying by a−1 and right-multiplying by b−1, we get ba = ab. Since a, b
are arbitrary, G is abelian.
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3 Problem 5

Let G be a finite group and let a, b ∈ G such that ab = ba.
a) Show |ab| divides |a||b|.

Proof. Since ab = ba, (ab)n = ab...ab = anbn for all n. In particular, (ab)|a||b| =
a|a||b|b|a||b| = e|b|e|a| = e. But in general, if xn = e, then |x| divides n. Therefore,
|ab| divides |a||b|.

b) If 〈a〉 ∩ 〈b〉 = {e}, show that |ab| = lcm{|a|, |b|}.

Proof. Note that (ab)|ab| = e = a|ab|b|ab| implies a|ab| = b−|ab|. But 〈a〉 ∩
〈b〉 = {e} implies that the only element that is both a power of a and b is e.
Thus a|ab| = b−|ab| = e. Thus |a| and |b| divide |ab|. Since |ab| is minimal,
|ab| = lcm{|a|, |b|}.

c) If |a|, |b| are coprime, show that |ab| = |a||b|.

Proof. Suppose ap = bq 6= e. Then since |ap| divides |a| and |bq| divides |b|, |a|
and b share a factor. Thus, if |a|, |b| are coprime, 〈a〉 ∩ 〈b〉 = {e}. The lcm of
coprime numbers is their product, so we are done by part b.

d) Exhibit a counterexample where these results fail if ab 6= ba.

Proof. Consider the group S4 of permutations on three elements. Consider
the elements a = (34), b = (124). Then |a| = 2, |b| = 3. ab = (1234), while
ba = (1243). |ab| = 4, which does not divide 2∗3 = 6, so a fails. 〈a〉 = {(34), e},
and 〈b〉 = {(124), (142), e}, so 〈a〉 ∩ 〈b〉 = {e}, but 4 is not the lcm of 2 and 3,
so b fails. Finally, 2 and 3 are coprime, but 4 6= 2 ∗ 3, so c fails as well.
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4 Problem 6

Let K = {
( x y
0 1

)
|x > 0, y ∈ R} and H = {

(
x 0
0 1

)
|x > 0}.

a) Show that K,H are subgroups of GL2(R).

Proof. Clearly K,H ⊂ GL2(R) since det
( x y
0 1

)
= det

(
x 0
0 1

)
= x 6= 0 by the

hypothesis that x > 0. Furthermore, both contain the identity
(
1 0
0 1

)
since

1 > 0.
Now,

( x y
0 1

)(
w z
0 1

)
=

(
wx xz+y
0 1

)
∈ K since wx > 0 for w, x > 0. By solving

wx = 1, xz + y = 0 we get w = 1
x , z = −y

x , which are well-defined since x 6= 0,
and the resulting matrix is in K since x > 0 implies w = 1

x > 0. Thus K is
closed under multiplication and inverses, so K is a subgroup.

Now, (
x 0
0 1

)(
w 0
0 1

)
=

(
wx 0
0 1

)
∈ H

since w, x > 0 implies wx > 0. The inverse is given when w = 1
x , which is well-

defined and positive since x > 0. Thus H is also closed under multiplication
and inverses, so it is a subgroup.

b) Is H normal in K?

Proof. First we note that H is a subgroup of K, which is clear since H is obvi-
ously a subset of K by definition, and since both are subgroups of GL2(R). Now

let k =
( x y
0 1

)
, h =

(
z 0
0 1

)
. Then khk−1 =

( x y
0 1

)(
z 0
0 1

)( 1
x −

y
x

0 1

)
=

( xz y
0 1

)( 1
x −

y
x

0 1

)
=(

z y−yz
0 1

)
, which is, in general, not an element of H (say y 6= 0, z 6= 1). Thus H

is not normal in K.

c) Identify K with the right half plane of R2 by
( x y
0 1

)
7→ (x, y). Draw the

partitions of K into left and right cosets of H.

Proof. For k =
( x y
0 1

)
, the coset kH consists of

( xz y
0 1

)
for all z > 0. These are

just the open rays (0,∞) × {y}. The right coset Hk consists of
(
z 0
0 1

)( x y
0 1

)
=( zx zy

0 1

)
for all z > 0. These are the open rays starting at the origin and passing

through the point (x, y). For figures, see the next page.
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Figure 1: Left cosets

Figure 2: Right cosets
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5 Problem 2.1.13

Let H be a subgroup of (Q,+) such that 1/x ∈ H for all nonzero x ∈ H. Prove
H = 0 or H = Q.

Proof. H = 0 satisfies the hypothesis vacuously. Thus assume H 6= 0. Let
a = p

q ∈ H be nonzero, where p, q are coprime and q > 0. Then a + ... + a, q

times is equal to p, so p ∈ H. Since p,−p ∈ H, let r = |p| ∈ H. Since r 6= 0,
1
r ∈ H. Thus 1

r + ... + 1
r , r times, which is 1, is in H. It follows then that all

integers are in H, since 1 + ... + 1 ∈ H and −1 + ... + −1 ∈ H. Then 1
n ∈ H

for all nonzero integers n. Then 1
n + ...+ 1

n , m times gives an arbitrary rational
number m

n ∈ H, so H = Q as desired.
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