MATH 4035 Homework 9 $\,$

Andrea Bourque

October 2020

1 Problem 10.4

If $L, L' \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$, then $||L + L'|| \le ||L|| + ||L'||$.

Proof. For each $\mathbf{x} \in \mathbb{E}^n$, we have $||L(\mathbf{x}) + L'(\mathbf{x})|| \le ||L(\mathbf{x})|| + ||L'(\mathbf{x})|| \le ||L|| \cdot ||\mathbf{x}|| + ||L'|| \cdot ||\mathbf{x}|| = (||L|| + ||L'||) ||\mathbf{x}||$, with the first inequality due to the triangle inequality on \mathbb{E}^m , and the second due to the definition of the norm of L and L'. Since ||L + L'|| is the infimum of K such that $||L(\mathbf{x}) + L'(\mathbf{x})|| \le K||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{E}^n$, it follows that $||L + L'|| \le ||L|| + ||L'||$.

2 Problem 10.8

Let $L \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ and $T \in \mathcal{L}(\mathbb{E}^m, \mathbb{E}^k)$. a) Prove that $||T \circ L|| \le ||T|| \cdot ||L||$.

Proof. $||T \circ L(\mathbf{x})|| \leq ||T|| \cdot ||L(\mathbf{x})|| \leq ||T|| \cdot ||L|| \cdot ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{E}^n$. Since $||T \circ L||$ is the infimum of all values of K satisfying $||T \circ L(\mathbf{x})|| \leq K||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{E}^n$, it follows that $||T \circ L|| \leq ||T|| \cdot ||L||$.

b) Let k = m = n. Denote $T^2 = T \circ T$ and $T^{j+1} = T^j \circ T$. Show that $||T^j|| \leq ||T||^j$.

Proof. From above, with T = L, we have $||T^2|| \le ||T||^2$. Then, by induction, we have $||T^{j+1}|| = ||T^j \circ T|| \le ||T^j|| \cdot ||T|| \le ||T||^j \cdot ||T|| = ||T||^{j+1}$. \Box

c) Give an example in which $||T^2|| < ||T||^2$.

Proof. Consider the linear transformation $T : (x, y) \mapsto (y, 0)$. Then $T^2 : (x, y) \mapsto (y, 0) \mapsto (0, 0)$, so $T^2 = 0 \in \mathcal{L}(\mathbb{E}^2)$. However, ||T|| = 1, so $||T^2|| = 0 < 1 = ||T||^2$.

3 Problem 10.16

Prove that the determinant function det : $\mathcal{L}(\mathbb{E}^n) \to \mathbb{R}$ is continuous.

Proof. Since the determinant of a linear transformation is a polynomial of the coefficients of the matrix of the transformation, which are the coordinates for $\mathcal{L}(\mathbb{E}^n)$, and polynomials are continuous functions, it follows that the determinant is continuous.

4 Problem 10.20

Prove that $\mathcal{GL}(n,\mathbb{R})$ is an open subset of $\mathcal{L}(\mathbb{E}^n)$.

Proof. We know that $\mathcal{GL}(n,\mathbb{R})$ consists precisely of linear transformations with non-zero determinant. That is, $\mathcal{GL}(n,\mathbb{R}) = \det^{-1}((-\infty,0) \cup (0,\infty))$. As proved in problem 10.16, the determinant is continuous. Furthermore, $(-\infty,0) \cup (0,\infty)$ is open. Thus $\mathcal{GL}(n,\mathbb{R}) = \det^{-1}((-\infty,0) \cup (0,\infty))$ is open as claimed, since for a continuous function, the inverse image of an open set is open. \Box