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1 Problem 9.33

Let D = {1|n € N} U{0} C E!. Prove the following:
a) D is compact.

Proof. For any 1, we have = > 0 > —1 since n > 0, and = < 1 since n > 1.

Also, =1 <0< 1. Thus D C [-1,1], so D is bounded.

Notice that 0 is a limit point of D, since for any € > 0, we can choose N > %
by the Archimedean principle, and then % < &. Thus, there are always non-zero
points of D close to 0.

Now consider a non-zero limit point z of D. That is, for any € > 0, there
is some element d € D N B.(z). If < 0, then we can choose € < |z, so that
D N B.(z) = 0, since the elements of D are non-negative. Thus z > 0. We
can similarly choose ¢ € (0,z), so that 0 ¢ B.(z). Then the only elements
in D N B.(x) are of the form % Since ¢ < x, the left endpoint of B.(z) =
(x — e,x + €) is non-zero. Thus, B.(x) contains finitely many terms of D; it
contains at most LﬁJ terms by the Archimedean principle. Therefore we can
choose the element % which has the smallest distance to z. If this distance is
non-zero, then we can choose an € smaller than it, leading to a contradiction of
x being a limit point. Therefore, the distance is zero, so z € D.

We have now shown that D contains all of its limit points. Thus D is
closed. Thus D is closed and bounded, and therefore compact by the Heine-
Borel theorem. O

b) If f € C(D,E™), then [|f|| must achieve both a maximum and a minimum
value on D.

Proof. By problem 9.13, the norm is a continuous function. By problem 9.28, the
composition of continuous functions is continuous. Therefore, ||f|| € C(D,E!).
Then since D is compact, the extreme value theorem gives the desired result. [

c)If g: D — E™, then g € C(D,E™) if and only if g(1) — g(0) as n — occ.
Proof. Suppose g € C(D,E™). 0 is a limit point of D. By theorem 9.2.1,
lim, 0 g(z) = g(0). (&) is a sequence in D\{0} converging to 0. Then by
theorem 9.1.1, g(1) — g(0).



Now suppose g(1) — g(0). Let z; be any sequence in D\{0} converging
to 0. Since D\{0} = {X|n € N}, we may let z; = n—1] Let € > 0. Then there
is N € N such that for all n > N, |[g(%) — g(0)|] < e. Similarly, there is an
M € N such that for all j > M, leJ < % Then n; > N for all j > M. Then
llg(x;) —g(0)]] < € for all j > M, so g(x;) — g(0). Since 0 is a limit point of
D, we have by theorems 9.2.1 and 9.1.1 that g € C(D,E™). O



2 Problem 9.39

Let D C E™. Suppose f; € C(D,E™) for all j, and suppose also that f; — f
uniformly on D. Then f € C(D,E™).

Proof. Let x € D and let € > 0. There is N € N so that for all n > N,
||f., — fllsup < 5. Since f,, is continuous, there is also a § > 0 such that for
x' € B(x), |[fn(x') — fu(x)|] < §. Thus

(") = £ < [[E(x") = £ (X + ([ (x) = E ()] + [|fn(x) — £(x)[| <&,

so f is continuous. O



3 Problem 9.41

Let D CE"™ and f : D — E™. Prove that if D is compact and f € C(D,E™),
then f is uniformly continuous on D.

Proof. Suppose that f is not uniformly continuous. Then there is an € > 0 such
that for all § > 0, we can choose x, x’ € D with ||x—x'|| < d, but ||f(x)—f(x/)|| >
€. Therefore consider a sequence d,, > 0 which converges to 0, and a sequence of
points X, y, € D such that ||x, —y,|| < J, with ||f(x,) —£(yn)|| > € for all n.
D is compact, so D is closed and bounded by the Heine-Borel theorem. Since
D is bounded, then by the Bolzano-Weierstrass theorem, there is a convergent
subsequence x,, — p. Since D is closed, p € D. Note also that ||y, — p|| <
¥ — Xl + [PXn — DIl < n + [[Xny — Bl = 0+0 = 0, 50 yn, — D as
well. Since f is continuous, f(p) = limg_ o f(Xp,) = limg_yo0 £(¥n, ). Then
[1f(xn,) — £(¥n, )|l = 0, which contradicts ||f(x,,) — f(yn)|| > ¢ for all n. O



