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1 Problem 9.33

Let D = { 1n |n ∈ N} ∪ {0} ⊂ E1. Prove the following:
a) D is compact.

Proof. For any 1
n , we have 1

n > 0 ≥ −1 since n > 0, and 1
n ≤ 1 since n ≥ 1.

Also, −1 ≤ 0 ≤ 1. Thus D ⊂ [−1, 1], so D is bounded.
Notice that 0 is a limit point of D, since for any ε > 0, we can choose N > 1

ε
by the Archimedean principle, and then 1

N < ε. Thus, there are always non-zero
points of D close to 0.

Now consider a non-zero limit point x of D. That is, for any ε > 0, there
is some element d ∈ D ∩ Bε(x). If x < 0, then we can choose ε < |x|, so that
D ∩ Bε(x) = ∅, since the elements of D are non-negative. Thus x > 0. We
can similarly choose ε ∈ (0, x), so that 0 /∈ Bε(x). Then the only elements
in D ∩ Bε(x) are of the form 1

n . Since ε < x, the left endpoint of Bε(x) =
(x − ε, x + ε) is non-zero. Thus, Bε(x) contains finitely many terms of D; it

contains at most
⌊

1
x−ε

⌋
terms by the Archimedean principle. Therefore we can

choose the element 1
k which has the smallest distance to x. If this distance is

non-zero, then we can choose an ε smaller than it, leading to a contradiction of
x being a limit point. Therefore, the distance is zero, so x ∈ D.

We have now shown that D contains all of its limit points. Thus D is
closed. Thus D is closed and bounded, and therefore compact by the Heine-
Borel theorem.

b) If f ∈ C(D,Em), then ||f || must achieve both a maximum and a minimum
value on D.

Proof. By problem 9.13, the norm is a continuous function. By problem 9.28, the
composition of continuous functions is continuous. Therefore, ||f || ∈ C(D,E1).
Then since D is compact, the extreme value theorem gives the desired result.

c) If g : D → Em, then g ∈ C(D,Em) if and only if g( 1
n )→ g(0) as n→∞.

Proof. Suppose g ∈ C(D,Em). 0 is a limit point of D. By theorem 9.2.1,
limx→0 g(x) = g(0). ( 1

n ) is a sequence in D\{0} converging to 0. Then by
theorem 9.1.1, g( 1

n )→ g(0).
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Now suppose g( 1
n ) → g(0). Let xj be any sequence in D\{0} converging

to 0. Since D\{0} = { 1n |n ∈ N}, we may let xj = 1
nj

. Let ε > 0. Then there

is N ∈ N such that for all n > N , ||g( 1
n ) − g(0)|| < ε. Similarly, there is an

M ∈ N such that for all j > M , 1
nj

< 1
N . Then nj > N for all j > M . Then

||g(xj) − g(0)|| < ε for all j > M , so g(xj) → g(0). Since 0 is a limit point of
D, we have by theorems 9.2.1 and 9.1.1 that g ∈ C(D,Em).
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2 Problem 9.39

Let D ⊆ En. Suppose fj ∈ C(D,Em) for all j, and suppose also that fj → f
uniformly on D. Then f ∈ C(D,Em).

Proof. Let x ∈ D and let ε > 0. There is N ∈ N so that for all n > N,
||fn − f ||sup < ε

3 . Since fn is continuous, there is also a δ > 0 such that for
x′ ∈ Bε(x), ||fn(x′)− fn(x)|| < ε

3 . Thus

||f(x′)− f(x)|| ≤ ||f(x′)− fn(x′)||+ ||fn(x′)− fn(x)||+ ||fn(x)− f(x)|| < ε,

so f is continuous.
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3 Problem 9.41

Let D ⊆ En and f : D → Em. Prove that if D is compact and f ∈ C(D,Em),
then f is uniformly continuous on D.

Proof. Suppose that f is not uniformly continuous. Then there is an ε > 0 such
that for all δ > 0, we can choose x,x′ ∈ D with ||x−x′|| < δ, but ||f(x)−f(x′)|| ≥
ε. Therefore consider a sequence δn > 0 which converges to 0, and a sequence of
points xn,yn ∈ D such that ||xn−yn|| < δn with ||f(xn)− f(yn)|| ≥ ε for all n.
D is compact, so D is closed and bounded by the Heine-Borel theorem. Since
D is bounded, then by the Bolzano-Weierstrass theorem, there is a convergent
subsequence xnk

→ p. Since D is closed, p ∈ D. Note also that ||ynk
− p|| ≤

||ynk
− xnk

|| + ||xnk
− p|| < δn + ||xnk

− p|| → 0 + 0 = 0, so ynk
→ p as

well. Since f is continuous, f(p) = limk→∞ f(xnk
) = limk→∞ f(ynk

). Then
||f(xnk

)− f(ynk
)|| → 0, which contradicts ||f(xn)− f(yn)|| ≥ ε for all n.
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